
org.squeryl.dsl.QueryDsl.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of squeryl_3 Show documentation
Show all versions of squeryl_3 Show documentation
A Scala ORM and DSL for talking with Databases using minimum verbosity and maximum type safety
The newest version!
/*******************************************************************************
* Copyright 2010 Maxime Lévesque
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
***************************************************************************** */
package org.squeryl.dsl
import ast._
import boilerplate._
import fsm._
import org.squeryl.internals._
import org.squeryl._
import java.sql.{SQLException, ResultSet}
import reflect.ClassTag
trait BaseQueryDsl {
implicit def noneKeyedEntityDef[A, K]: OptionalKeyedEntityDef[A, K] = new OptionalKeyedEntityDef[A, K] {
override def keyedEntityDef: Option[KeyedEntityDef[A, K]] = None
}
}
trait QueryDsl
extends WhereState[Unconditioned]
with ComputeMeasuresSignaturesFromStartOrWhereState
with StartState
with QueryElements[Unconditioned]
with JoinSignatures
with FromSignatures
with BaseQueryDsl {
outerQueryDsl =>
implicit def kedForKeyedEntities[A, K](implicit ev: A <:< KeyedEntity[K], m: ClassTag[A]): KeyedEntityDef[A, K] =
new KeyedEntityDef[A, K] {
def getId(a: A) = a.id
def isPersisted(a: A) = a.isPersisted
def idPropertyName = "id"
override def optimisticCounterPropertyName =
if (classOf[Optimistic].isAssignableFrom(m.runtimeClass))
Some("occVersionNumber")
else
None
}
implicit def queryToIterable[R](q: Query[R]): Iterable[R] = {
val i = q.iterator
new Iterable[R] {
val hasFirst = i.hasNext
lazy val firstRow =
if (hasFirst) Some(i.next()) else None
override def head = firstRow.get
override def headOption = firstRow
override def isEmpty = !hasFirst
def iterator: Iterator[R] =
new IteratorConcatenation(firstRow.iterator, i)
}
}
// implicit def viewToIterable[R](t: View[R]): Iterable[R] =
// queryToIterable(view2QueryAll(t))
def using[A](session: AbstractSession)(a: => A): A =
session.using(() => a)
def transaction[A](sf: SessionFactory)(a: => A) =
sf.newSession.withinTransaction(() => a)
def inTransaction[A](sf: SessionFactory)(a: => A) =
if (!Session.hasCurrentSession)
sf.newSession.withinTransaction(() => a)
else
a
def transaction[A](s: AbstractSession)(a: => A) =
s.withinTransaction(() => a)
/**
* 'transaction' causes a new transaction to begin and commit after the block execution, or rollback
* if an exception occurs. Invoking a transaction always cause a new one to
* be created, even if called in the context of an existing transaction.
*/
def transaction[A](a: => A): A =
if (!Session.hasCurrentSession)
SessionFactory.newSession.withinTransaction(() => a)
else {
val s = Session.currentSession
val res =
try {
s.unbindFromCurrentThread
SessionFactory.newSession.withinTransaction(() => a)
} finally {
s.bindToCurrentThread
}
res
}
/**
* 'inTransaction' will create a new transaction if none is in progress and commit it upon
* completion or rollback on exceptions. If a transaction already exists, it has no
* effect, the block will execute in the context of the existing transaction. The
* commit/rollback is handled in this case by the parent transaction block.
*/
def inTransaction[A](a: => A): A =
if (!Session.hasCurrentSession)
SessionFactory.newSession.withinTransaction(() => a)
else {
a
}
implicit def __thisDsl: QueryDsl = this
def where(b: => LogicalBoolean): WhereState[Conditioned] =
new fsm.QueryElementsImpl[Conditioned](Some(() => b), Nil)
def withCte(queries: Query[_]*): WithState =
new fsm.WithState(queries.toList.map(_.copy(false, Nil)))
def &[A, T](i: => TypedExpression[A, T]): A =
FieldReferenceLinker.pushExpressionOrCollectValue[A](() => i)
implicit def typedExpression2OrderByArg[E](e: E)(implicit ev: E => TypedExpression[_, _]): OrderByArg =
new OrderByArg(ev(e))
implicit def orderByArg2OrderByExpression(a: OrderByArg): OrderByExpression = new OrderByExpression(a)
def sDevPopulation[T2 >: TOptionFloat, T1 <: T2, A1, A2](b: TypedExpression[A1, T1])(implicit
f: TypedExpressionFactory[A2, T2]
) = f.convert(new FunctionNode("stddev_pop", Seq(b)))
def sDevSample[T2 >: TOptionFloat, T1 <: T2, A1, A2](b: TypedExpression[A1, T1])(implicit
f: TypedExpressionFactory[A2, T2]
) = f.convert(new FunctionNode("stddev_samp", Seq(b)))
def varPopulation[T2 >: TOptionFloat, T1 <: T2, A1, A2](b: TypedExpression[A1, T1])(implicit
f: TypedExpressionFactory[A2, T2]
) = f.convert(new FunctionNode("var_pop", Seq(b)))
def varSample[T2 >: TOptionFloat, T1 <: T2, A1, A2](b: TypedExpression[A1, T1])(implicit
f: TypedExpressionFactory[A2, T2]
) = f.convert(new FunctionNode("var_samp", Seq(b)))
def max[T2 >: TOption, T1 <: T2, A1, A2](b: TypedExpression[A1, T1])(implicit f: TypedExpressionFactory[A2, T2]) =
f.convert(new FunctionNode("max", Seq(b)))
def min[T2 >: TOption, T1 <: T2, A1, A2](b: TypedExpression[A1, T1])(implicit f: TypedExpressionFactory[A2, T2]) =
f.convert(new FunctionNode("min", Seq(b)))
def avg[T2 >: TOptionFloat, T1 <: T2, A1, A2](b: TypedExpression[A1, T1])(implicit
f: TypedExpressionFactory[A2, T2]
) = f.convert(new FunctionNode("avg", Seq(b)))
def sum[T2 >: TOption, T1 >: TNumericLowerTypeBound <: T2, A1, A2](b: TypedExpression[A1, T1])(implicit
f: TypedExpressionFactory[A2, T2]
) = f.convert(new FunctionNode("sum", Seq(b)))
def nvl[T4 <: TNonOption, T1 >: TOption, T3 >: T1, T2 <: T3, A1, A2, A3](
a: TypedExpression[A1, T1],
b: TypedExpression[A2, T2]
)(implicit d: DeOptionizer[_, A3, T4, _, T3]): TypedExpression[A3, T4] = new NvlNode(a, d.deOptionizer.convert(b))
def not(b: LogicalBoolean) = new FunctionNode("not", Seq(b)) with LogicalBoolean
def upper[A1, T1](s: TypedExpression[A1, T1])(implicit f: TypedExpressionFactory[A1, T1], ev2: T1 <:< TOptionString) =
f.convert(new FunctionNode("upper", Seq(s)))
def lower[A1, T1](s: TypedExpression[A1, T1])(implicit f: TypedExpressionFactory[A1, T1], ev2: T1 <:< TOptionString) =
f.convert(new FunctionNode("lower", Seq(s)))
def exists[A1](query: Query[A1]) = new ExistsExpression(query.copy(false, Nil).ast, "exists")
def notExists[A1](query: Query[A1]) = new ExistsExpression(query.copy(false, Nil).ast, "not exists")
implicit val numericComparisonEvidence: CanCompare[TNumeric, TNumeric] = new CanCompare[TNumeric, TNumeric]
implicit val dateComparisonEvidence: CanCompare[TOptionDate, TOptionDate] = new CanCompare[TOptionDate, TOptionDate]
implicit val timestampComparisonEvidence: CanCompare[TOptionTimestamp, TOptionTimestamp] =
new CanCompare[TOptionTimestamp, TOptionTimestamp]
implicit val stringComparisonEvidence: CanCompare[TOptionString, TOptionString] =
new CanCompare[TOptionString, TOptionString]
implicit val booleanComparisonEvidence: CanCompare[TOptionBoolean, TOptionBoolean] =
new CanCompare[TOptionBoolean, TOptionBoolean]
implicit val uuidComparisonEvidence: CanCompare[TOptionUUID, TOptionUUID] = new CanCompare[TOptionUUID, TOptionUUID]
implicit def enumComparisonEvidence[A]: CanCompare[TEnumValue[A], TEnumValue[A]] =
new CanCompare[TEnumValue[A], TEnumValue[A]]
implicit def concatenationConversion[A1, A2, T1, T2](co: ConcatOp[A1, A2, T1, T2]): TypedExpression[String, TString] =
new ConcatOperationNode[String, TString](co.a1, co.a2, InternalFieldMapper.stringTEF.createOutMapper)
implicit def concatenationConversionWithOption1[A1, A2, T1, T2](
co: ConcatOp[Option[A1], A2, T1, T2]
): TypedExpression[Option[String], TOptionString] =
new ConcatOperationNode[Option[String], TOptionString](
co.a1,
co.a2,
InternalFieldMapper.optionStringTEF.createOutMapper
)
implicit def concatenationConversionWithOption2[A1, A2, T1, T2](
co: ConcatOp[A1, Option[A2], T1, T2]
): TypedExpression[Option[String], TOptionString] =
new ConcatOperationNode[Option[String], TOptionString](
co.a1,
co.a2,
InternalFieldMapper.optionStringTEF.createOutMapper
)
implicit def concatenationConversionWithOption3[A1, A2, T1, T2](
co: ConcatOp[Option[A1], Option[A2], T1, T2]
): TypedExpression[Option[String], TOptionString] =
new ConcatOperationNode[Option[String], TOptionString](
co.a1,
co.a2,
InternalFieldMapper.optionStringTEF.createOutMapper
)
class ConcatOperationNode[A, T](e1: ExpressionNode, e2: ExpressionNode, val mapper: OutMapper[A])
extends BinaryOperatorNode(e1, e2, "||", false)
with TypedExpression[A, T] {
override def doWrite(sw: StatementWriter) =
sw.databaseAdapter.writeConcatOperator(e1, e2, sw)
}
trait SingleRowQuery[R] {
self: Query[R] =>
}
trait SingleColumnQuery[T] {
self: Query[T] =>
}
trait ScalarQuery[T] extends Query[T] with SingleColumnQuery[T] with SingleRowQuery[T]
implicit def scalarQuery2Scalar[T](sq: ScalarQuery[T]): T = sq.head
implicit def countQueryableToIntTypeQuery[R](q: Queryable[R]): CountSubQueryableQuery = new CountSubQueryableQuery(q)
def count: CountFunction = count()
def count(e: TypedExpression[_, _]*) = new CountFunction(e, false)
def countDistinct(e: TypedExpression[_, _]*) = new CountFunction(e, true)
class CountFunction(_args: collection.Seq[ExpressionNode], isDistinct: Boolean)
extends FunctionNode(
"count",
_args match {
case Nil => Seq(new TokenExpressionNode("*"))
case _ => _args
}
)
with TypedExpression[Long, TLong] {
def mapper = InternalFieldMapper.longTEF.createOutMapper
override def doWrite(sw: StatementWriter) = {
sw.write(name)
sw.write("(")
if (isDistinct)
sw.write("distinct ")
sw.writeNodesWithSeparator(args, ",", false)
sw.write(")")
}
}
private def _countFunc = count
class CountSubQueryableQuery(q: Queryable[_]) extends Query[Long] with ScalarQuery[Long] {
private[this] val _inner: Query[Measures[Long]] =
from(q)(r => compute(_countFunc))
def iterator = _inner.map(m => m.measures).iterator
def Count: ScalarQuery[Long] = this
def statement: String = _inner.statement
// Paginating a Count query makes no sense perhaps an org.squeryl.internals.Utils.throwError() would be more appropriate here:
def page(offset: Int, length: Int): Query[Long] = this
def distinct: Query[Long] = this
def forUpdate: Query[Long] = _inner.forUpdate
def dumpAst = _inner.dumpAst
def ast = _inner.ast
protected[squeryl] def invokeYield(rsm: ResultSetMapper, rs: ResultSet) =
_inner.invokeYield(rsm, rs).measures
override private[squeryl] def copy(asRoot: Boolean, newUnions: List[(String, Query[Long])]): Query[Long] =
new CountSubQueryableQuery(q)
def name = _inner.name
private[squeryl] def give(rsm: ResultSetMapper, rs: ResultSet) =
q.invokeYield(rsm, rs)
def union(q0: Query[Long]): Query[Long] = Utils.throwError("Not supported")
def unionAll(q0: Query[Long]): Query[Long] = Utils.throwError("Not supported")
def intersect(q0: Query[Long]): Query[Long] = Utils.throwError("Not supported")
def intersectAll(q0: Query[Long]): Query[Long] = Utils.throwError("Not supported")
def except(q0: Query[Long]): Query[Long] = Utils.throwError("Not supported")
def exceptAll(q0: Query[Long]): Query[Long] = Utils.throwError("Not supported")
}
implicit def singleColComputeQuery2ScalarQuery[T](cq: Query[Measures[T]]): ScalarQuery[T] =
new ScalarMeasureQuery[T](cq)
implicit def singleColComputeQuery2Scalar[T](cq: Query[Measures[T]]): T = new ScalarMeasureQuery[T](cq).head
class ScalarMeasureQuery[T](q: Query[Measures[T]]) extends Query[T] with ScalarQuery[T] {
def iterator = q.map(m => m.measures).iterator
def distinct: Query[T] = this
def forUpdate: Query[T] = q.forUpdate
def dumpAst = q.dumpAst
// TODO: think about this : Paginating a Count query makes no sense perhaps an org.squeryl.internals.Utils.throwError() would be more appropriate here.
def page(offset: Int, length: Int): Query[T] = this
def statement: String = q.statement
def ast = q.ast
protected[squeryl] def invokeYield(rsm: ResultSetMapper, rs: ResultSet) =
q.invokeYield(rsm, rs).measures
override private[squeryl] def copy(asRoot: Boolean, newUnions: List[(String, Query[T])]): Query[T] =
new ScalarMeasureQuery(q)
def name = q.name
private[squeryl] def give(rsm: ResultSetMapper, rs: ResultSet) =
q.invokeYield(rsm, rs).measures
def union(q0: Query[T]): Query[T] = Utils.throwError("Not supported")
def unionAll(q0: Query[T]): Query[T] = Utils.throwError("Not supported")
def intersect(q0: Query[T]): Query[T] = Utils.throwError("Not supported")
def intersectAll(q0: Query[T]): Query[T] = Utils.throwError("Not supported")
def except(q0: Query[T]): Query[T] = Utils.throwError("Not supported")
def exceptAll(q0: Query[T]): Query[T] = Utils.throwError("Not supported")
}
/**
* Used for supporting 'inhibitWhen' dynamic queries
*/
implicit def queryable2OptionalQueryable[A](q: Queryable[A]): OptionalQueryable[A] = new OptionalQueryable[A](q)
// implicit def view2QueryAll[A](v: View[A]) = from(v)(a=> select(a))
def update[A](t: Table[A])(s: A => UpdateStatement): Int = t.update(s)
def manyToManyRelation[L, R](l: Table[L], r: Table[R])(implicit
kedL: KeyedEntityDef[L, _],
kedR: KeyedEntityDef[R, _]
) =
new ManyToManyRelationBuilder(l, r, None, kedL, kedR)
def manyToManyRelation[L, R](l: Table[L], r: Table[R], nameOfMiddleTable: String)(implicit
kedL: KeyedEntityDef[L, _],
kedR: KeyedEntityDef[R, _]
) =
new ManyToManyRelationBuilder(l, r, Some(nameOfMiddleTable), kedL, kedR)
class ManyToManyRelationBuilder[L, R](
l: Table[L],
r: Table[R],
nameOverride: Option[String],
kedL: KeyedEntityDef[L, _],
kedR: KeyedEntityDef[R, _]
) {
def via[A](
f: (L, R, A) => Tuple2[EqualityExpression, EqualityExpression]
)(implicit ClassTagA: ClassTag[A], schema: Schema, kedA: KeyedEntityDef[A, _]) = {
val m2m = new ManyToManyRelationImpl(
l,
r,
ClassTagA.runtimeClass.asInstanceOf[Class[A]],
f,
schema,
nameOverride,
kedL,
kedR,
kedA
)
schema._addTable(m2m)
m2m
}
}
private def invalidBindingExpression =
Utils.throwError("Binding expression of relation uses a def, not a field (val or var)")
class ManyToManyRelationImpl[L, R, A](
val leftTable: Table[L],
val rightTable: Table[R],
aClass: Class[A],
f: (L, R, A) => Tuple2[EqualityExpression, EqualityExpression],
schema: Schema,
nameOverride: Option[String],
kedL: KeyedEntityDef[L, _],
kedR: KeyedEntityDef[R, _],
kedA: KeyedEntityDef[A, _]
) extends Table[A](nameOverride.getOrElse(schema.tableNameFromClass(aClass)), aClass, schema, None, Some(kedA), None)
with ManyToManyRelation[L, R, A] {
thisTableOfA =>
def thisTable: Table[A] = thisTableOfA
schema._addRelation(this)
private[this] val (_leftEqualityExpr, _rightEqualityExpr) = {
var e2: Option[Tuple2[EqualityExpression, EqualityExpression]] = None
from(leftTable, rightTable, thisTableOfA)((l, r, a) => {
e2 = Some(f(l, r, a))
select(None)
})
val e2_ = e2.get
if (e2_._1.filterDescendantsOfType[ConstantTypedExpression[_, _]].nonEmpty)
invalidBindingExpression
if (e2_._2.filterDescendantsOfType[ConstantTypedExpression[_, _]].nonEmpty)
invalidBindingExpression
// invert Pair[EqualityExpression,EqualityExpression] if it has been declared in reverse :
if (_viewReferedInExpression(leftTable, e2_._1)) {
assert(_viewReferedInExpression(rightTable, e2_._2))
e2_
} else {
assert(_viewReferedInExpression(leftTable, e2_._2))
assert(_viewReferedInExpression(rightTable, e2_._1))
(e2_._2, e2_._1)
}
}
private def _viewReferedInExpression(v: View[_], ee: EqualityExpression) =
ee.filterDescendantsOfType[SelectElementReference[Any, Any]]
.exists(
_.selectElement.origin.asInstanceOf[ViewExpressionNode[_]].view == v
)
private[this] val (leftPkFmd, leftFkFmd) = _splitEquality(_leftEqualityExpr, thisTable, false)
private[this] val (rightPkFmd, rightFkFmd) = _splitEquality(_rightEqualityExpr, thisTable, false)
val leftForeignKeyDeclaration =
schema._createForeignKeyDeclaration(leftFkFmd.columnName, leftPkFmd.columnName)
val rightForeignKeyDeclaration =
schema._createForeignKeyDeclaration(rightFkFmd.columnName, rightPkFmd.columnName)
private def _associate[T](o: T, m2m: ManyToMany[T, A]): A = {
val aInst = m2m.assign(o)
try {
thisTableOfA.insertOrUpdate(aInst)(kedA)
} catch {
case e: SQLException =>
if (Session.currentSession.databaseAdapter.isNotNullConstraintViolation(e))
throw new RuntimeException(
"the 'associate method created and inserted association object of type " +
posoMetaData.clasz.getName + " that has NOT NULL colums, plase use the other signature of 'ManyToMany" +
" that takes the association object as argument : associate(o,a) for association objects that have NOT NULL columns",
e
)
else
throw e
}
}
def left(leftSideMember: L): Query[R] with ManyToMany[R, A] = {
val q =
from(thisTableOfA, rightTable)((a, r) => {
val matchClause = f(leftSideMember, r, a)
outerQueryDsl.where(matchClause._1 and matchClause._2).select(r)
})
new DelegateQuery(q) with ManyToMany[R, A] {
def kedL = thisTableOfA.kedR
private def _assignKeys(r: R, a: AnyRef): Unit = {
val leftPk = leftPkFmd.get(leftSideMember.asInstanceOf[AnyRef])
val rightPk = rightPkFmd.get(r.asInstanceOf[AnyRef])
leftFkFmd.set(a, leftPk)
rightFkFmd.set(a, rightPk)
}
def associationMap =
from(thisTableOfA, rightTable)((a, r) => {
val matchClause = f(leftSideMember, r, a)
outerQueryDsl.where(matchClause._1 and matchClause._2).select((r, a))
})
def assign(o: R, a: A) = {
_assignKeys(o, a.asInstanceOf[AnyRef])
a
}
def associate(o: R, a: A): A = {
assign(o, a)
thisTableOfA.insertOrUpdate(a)(kedA)
a
}
def assign(o: R): A = {
val aInstAny = thisTableOfA._createInstanceOfRowObject
val aInst = aInstAny.asInstanceOf[A]
_assignKeys(o, aInstAny)
aInst
}
def associate(o: R): A =
_associate(o, this)
def dissociate(o: R) =
thisTableOfA.deleteWhere(a0 => _whereClauseForAssociations(a0) and _equalityForRightSide(a0, o)) > 0
def _whereClauseForAssociations(a0: A) = {
val leftPk = leftPkFmd.get(leftSideMember.asInstanceOf[AnyRef])
leftFkFmd.get(a0.asInstanceOf[AnyRef])
FieldReferenceLinker.createEqualityExpressionWithLastAccessedFieldReferenceAndConstant(leftPk, None)
}
def _equalityForRightSide(a0: A, r: R) = {
val rightPk = rightPkFmd.get(r.asInstanceOf[AnyRef])
rightFkFmd.get(a0.asInstanceOf[AnyRef])
FieldReferenceLinker.createEqualityExpressionWithLastAccessedFieldReferenceAndConstant(rightPk, None)
}
def dissociateAll =
thisTableOfA.deleteWhere(a0 => _whereClauseForAssociations(a0))
def associations =
thisTableOfA.where(a0 => _whereClauseForAssociations(a0))
}
}
def right(rightSideMember: R): Query[L] with ManyToMany[L, A] = {
val q =
from(thisTableOfA, leftTable)((a, l) => {
val matchClause = f(l, rightSideMember, a)
outerQueryDsl.where(matchClause._1 and matchClause._2).select(l)
})
new DelegateQuery(q) with ManyToMany[L, A] {
def kedL = thisTableOfA.kedL
private def _assignKeys(l: L, a: AnyRef): Unit = {
val rightPk = rightPkFmd.get(rightSideMember.asInstanceOf[AnyRef])
val leftPk = leftPkFmd.get(l.asInstanceOf[AnyRef])
rightFkFmd.set(a, rightPk)
leftFkFmd.set(a, leftPk)
}
def associationMap =
from(thisTableOfA, leftTable)((a, l) => {
val matchClause = f(l, rightSideMember, a)
outerQueryDsl.where(matchClause._1 and matchClause._2).select((l, a))
})
def assign(o: L, a: A) = {
_assignKeys(o, a.asInstanceOf[AnyRef])
a
}
def associate(o: L, a: A): A = {
assign(o, a)
thisTableOfA.insertOrUpdate(a)(kedA)
a
}
def assign(o: L): A = {
val aInstAny = thisTableOfA._createInstanceOfRowObject
val aInst = aInstAny.asInstanceOf[A]
_assignKeys(o, aInstAny)
aInst
}
def associate(o: L): A =
_associate(o, this)
def dissociate(o: L) =
thisTableOfA.deleteWhere(a0 => _whereClauseForAssociations(a0) and _leftEquality(o, a0)) > 0
def _leftEquality(l: L, a0: A) = {
val leftPk = leftPkFmd.get(l.asInstanceOf[AnyRef])
leftFkFmd.get(a0.asInstanceOf[AnyRef])
FieldReferenceLinker.createEqualityExpressionWithLastAccessedFieldReferenceAndConstant(leftPk, None)
}
def _whereClauseForAssociations(a0: A) = {
val rightPk = rightPkFmd.get(rightSideMember.asInstanceOf[AnyRef])
rightFkFmd.get(a0.asInstanceOf[AnyRef])
FieldReferenceLinker.createEqualityExpressionWithLastAccessedFieldReferenceAndConstant(rightPk, None)
}
def dissociateAll =
thisTableOfA.deleteWhere(a0 => _whereClauseForAssociations(a0))
def associations =
thisTableOfA.where(a0 => _whereClauseForAssociations(a0))
}
}
}
def oneToManyRelation[O, M](ot: Table[O], mt: Table[M])(implicit kedO: KeyedEntityDef[O, _]) =
new OneToManyRelationBuilder(ot, mt)
class OneToManyRelationBuilder[O, M](ot: Table[O], mt: Table[M]) {
def via(f: (O, M) => EqualityExpression)(implicit schema: Schema, kedM: KeyedEntityDef[M, _]) =
new OneToManyRelationImpl(ot, mt, f, schema, kedM)
}
class OneToManyRelationImpl[O, M](
val leftTable: Table[O],
val rightTable: Table[M],
f: (O, M) => EqualityExpression,
schema: Schema,
kedM: KeyedEntityDef[M, _]
) extends OneToManyRelation[O, M] {
schema._addRelation(this)
private def _isSelfReference =
leftTable == rightTable
// we obtain the FieldMetaDatas from the 'via' function by creating an EqualityExpression AST and then extract the FieldMetaDatas from it,
// the FieldMetaData will serve to set fields (primary and foreign keys on the objects in the relation)
private[this] val (_leftPkFmd, _rightFkFmd) = {
var ee: Option[EqualityExpression] = None
// we create a query for the sole purpose of extracting the equality (inside the relation's 'via' clause)
from(leftTable, rightTable)((o, m) => {
ee = Some(f(o, m))
select(None)
})
val ee_ = ee.get // here we have the equality AST (_ee) contains a left and right node, SelectElementReference
// that refer to FieldSelectElement, who in turn refer to the FieldMetaData
if (ee_.filterDescendantsOfType[ConstantTypedExpression[_, _]].nonEmpty)
invalidBindingExpression
// now the Tuple with the left and right FieldMetaData
_splitEquality(ee.get, rightTable, _isSelfReference)
}
val foreignKeyDeclaration =
schema._createForeignKeyDeclaration(_rightFkFmd.columnName, _leftPkFmd.columnName)
def left(leftSide: O): OneToMany[M] = {
val q = from(rightTable)(m => where(f(leftSide, m)) select (m))
new DelegateQuery(q) with OneToMany[M] {
def deleteAll =
rightTable.deleteWhere(m => f(leftSide, m))
def assign(m: M) = {
val m0 = m.asInstanceOf[AnyRef]
val l0 = leftSide.asInstanceOf[AnyRef]
val v = _leftPkFmd.get(l0)
_rightFkFmd.set(m0, v)
m
}
def associate(m: M) = {
assign(m)
rightTable.insertOrUpdate(m)(kedM)
}
}
}
def right(rightSide: M): ManyToOne[O] = {
val q = from(leftTable)(o => where(f(o, rightSide)) select (o))
new DelegateQuery(q) with ManyToOne[O] {
def assign(one: O) = {
val o = one.asInstanceOf[AnyRef]
val r = rightSide.asInstanceOf[AnyRef]
val v = _rightFkFmd.get(r)
_leftPkFmd.set(o, v)
one
}
def delete =
leftTable.deleteWhere(o => f(o, rightSide)) > 0
}
}
}
/**
* returns a (FieldMetaData, FieldMetaData) where ._1 is the id of the KeyedEntity on the left or right side,
* and where ._2 is the foreign key of the association object/table
*/
private def _splitEquality(
ee: EqualityExpression,
rightTable: Table[_],
isSelfReference: Boolean
): (FieldMetaData, FieldMetaData) = {
if (isSelfReference)
assert(ee.right._fieldMetaData.isIdFieldOfKeyedEntity || ee.left._fieldMetaData.isIdFieldOfKeyedEntity)
def msg =
"equality expression incorrect in relation involving table " + rightTable.prefixedName + ", or perhaps inverted oneToManyRelation"
if (
ee.left._fieldMetaData.parentMetaData.clasz == rightTable.classOfT &&
(!isSelfReference || (isSelfReference && ee.right._fieldMetaData.isIdFieldOfKeyedEntity))
) {
assert(ee.right._fieldMetaData.isIdFieldOfKeyedEntity, msg)
(ee.right._fieldMetaData, ee.left._fieldMetaData)
} else {
assert(ee.left._fieldMetaData.isIdFieldOfKeyedEntity, msg)
(ee.left._fieldMetaData, ee.right._fieldMetaData)
}
}
// Composite key syntactic sugar :
def compositeKey[A1, A2](a1: A1, a2: A2)(implicit
ev1: A1 => TypedExpression[A1, _],
ev2: A2 => TypedExpression[A2, _]
) =
CompositeKey2(a1, a2)
def compositeKey[A1, A2, A3](a1: A1, a2: A2, a3: A3)(implicit
ev1: A1 => TypedExpression[A1, _],
ev2: A2 => TypedExpression[A2, _],
ev3: A3 => TypedExpression[A3, _]
) =
CompositeKey3(a1, a2, a3)
def compositeKey[A1, A2, A3, A4](a1: A1, a2: A2, a3: A3, a4: A4)(implicit
ev1: A1 => TypedExpression[A1, _],
ev2: A2 => TypedExpression[A2, _],
ev3: A3 => TypedExpression[A3, _],
ev4: A4 => TypedExpression[A4, _]
) =
CompositeKey4(a1, a2, a3, a4)
def compositeKey[A1, A2, A3, A4, A5](a1: A1, a2: A2, a3: A3, a4: A4, a5: A5)(implicit
ev1: A1 => TypedExpression[A1, _],
ev2: A2 => TypedExpression[A2, _],
ev3: A3 => TypedExpression[A3, _],
ev4: A4 => TypedExpression[A4, _],
ev5: A5 => TypedExpression[A5, _]
) =
CompositeKey5(a1, a2, a3, a4, a5)
def compositeKey[A1, A2, A3, A4, A5, A6](a1: A1, a2: A2, a3: A3, a4: A4, a5: A5, a6: A6)(implicit
ev1: A1 => TypedExpression[A1, _],
ev2: A2 => TypedExpression[A2, _],
ev3: A3 => TypedExpression[A3, _],
ev4: A4 => TypedExpression[A4, _],
ev5: A5 => TypedExpression[A5, _],
ev6: A6 => TypedExpression[A6, _]
) =
CompositeKey6(a1, a2, a3, a4, a5, a6)
def compositeKey[A1, A2, A3, A4, A5, A6, A7](a1: A1, a2: A2, a3: A3, a4: A4, a5: A5, a6: A6, a7: A7)(implicit
ev1: A1 => TypedExpression[A1, _],
ev2: A2 => TypedExpression[A2, _],
ev3: A3 => TypedExpression[A3, _],
ev4: A4 => TypedExpression[A4, _],
ev5: A5 => TypedExpression[A5, _],
ev6: A6 => TypedExpression[A6, _],
ev7: A7 => TypedExpression[A7, _]
) =
CompositeKey7(a1, a2, a3, a4, a5, a6, a7)
def compositeKey[A1, A2, A3, A4, A5, A6, A7, A8](a1: A1, a2: A2, a3: A3, a4: A4, a5: A5, a6: A6, a7: A7, a8: A8)(
implicit
ev1: A1 => TypedExpression[A1, _],
ev2: A2 => TypedExpression[A2, _],
ev3: A3 => TypedExpression[A3, _],
ev4: A4 => TypedExpression[A4, _],
ev5: A5 => TypedExpression[A5, _],
ev6: A6 => TypedExpression[A6, _],
ev7: A7 => TypedExpression[A7, _],
ev8: A8 => TypedExpression[A8, _]
) =
CompositeKey8(a1, a2, a3, a4, a5, a6, a7, a8)
def compositeKey[A1, A2, A3, A4, A5, A6, A7, A8, A9](
a1: A1,
a2: A2,
a3: A3,
a4: A4,
a5: A5,
a6: A6,
a7: A7,
a8: A8,
a9: A9
)(implicit
ev1: A1 => TypedExpression[A1, _],
ev2: A2 => TypedExpression[A2, _],
ev3: A3 => TypedExpression[A3, _],
ev4: A4 => TypedExpression[A4, _],
ev5: A5 => TypedExpression[A5, _],
ev6: A6 => TypedExpression[A6, _],
ev7: A7 => TypedExpression[A7, _],
ev8: A8 => TypedExpression[A8, _],
ev9: A9 => TypedExpression[A9, _]
) =
CompositeKey9(a1, a2, a3, a4, a5, a6, a7, a8, a9)
// Tuple to composite key conversions :
implicit def t2te[A1, A2](
t: (A1, A2)
)(implicit ev1: A1 => TypedExpression[A1, _], ev2: A2 => TypedExpression[A2, _]): CompositeKey2[A1, A2] =
new CompositeKey2[A1, A2](t._1, t._2)
implicit def t3te[A1, A2, A3](t: (A1, A2, A3))(implicit
ev1: A1 => TypedExpression[A1, _],
ev2: A2 => TypedExpression[A2, _],
ev3: A3 => TypedExpression[A3, _]
): CompositeKey3[A1, A2, A3] =
new CompositeKey3[A1, A2, A3](t._1, t._2, t._3)
implicit def t4te[A1, A2, A3, A4](t: (A1, A2, A3, A4))(implicit
ev1: A1 => TypedExpression[A1, _],
ev2: A2 => TypedExpression[A2, _],
ev3: A3 => TypedExpression[A3, _],
ev4: A4 => TypedExpression[A4, _]
): CompositeKey4[A1, A2, A3, A4] =
new CompositeKey4[A1, A2, A3, A4](t._1, t._2, t._3, t._4)
implicit def t5te[A1, A2, A3, A4, A5](t: (A1, A2, A3, A4, A5))(implicit
ev1: A1 => TypedExpression[A1, _],
ev2: A2 => TypedExpression[A2, _],
ev3: A3 => TypedExpression[A3, _],
ev4: A4 => TypedExpression[A4, _],
ev5: A5 => TypedExpression[A5, _]
): CompositeKey5[A1, A2, A3, A4, A5] =
new CompositeKey5[A1, A2, A3, A4, A5](t._1, t._2, t._3, t._4, t._5)
implicit def t6te[A1, A2, A3, A4, A5, A6](t: (A1, A2, A3, A4, A5, A6))(implicit
ev1: A1 => TypedExpression[A1, _],
ev2: A2 => TypedExpression[A2, _],
ev3: A3 => TypedExpression[A3, _],
ev4: A4 => TypedExpression[A4, _],
ev5: A5 => TypedExpression[A5, _],
ev6: A6 => TypedExpression[A6, _]
): CompositeKey6[A1, A2, A3, A4, A5, A6] =
new CompositeKey6[A1, A2, A3, A4, A5, A6](t._1, t._2, t._3, t._4, t._5, t._6)
implicit def t7te[A1, A2, A3, A4, A5, A6, A7](t: (A1, A2, A3, A4, A5, A6, A7))(implicit
ev1: A1 => TypedExpression[A1, _],
ev2: A2 => TypedExpression[A2, _],
ev3: A3 => TypedExpression[A3, _],
ev4: A4 => TypedExpression[A4, _],
ev5: A5 => TypedExpression[A5, _],
ev6: A6 => TypedExpression[A6, _],
ev7: A7 => TypedExpression[A7, _]
): CompositeKey7[A1, A2, A3, A4, A5, A6, A7] =
new CompositeKey7[A1, A2, A3, A4, A5, A6, A7](t._1, t._2, t._3, t._4, t._5, t._6, t._7)
implicit def t8te[A1, A2, A3, A4, A5, A6, A7, A8](t: (A1, A2, A3, A4, A5, A6, A7, A8))(implicit
ev1: A1 => TypedExpression[A1, _],
ev2: A2 => TypedExpression[A2, _],
ev3: A3 => TypedExpression[A3, _],
ev4: A4 => TypedExpression[A4, _],
ev5: A5 => TypedExpression[A5, _],
ev6: A6 => TypedExpression[A6, _],
ev7: A7 => TypedExpression[A7, _],
ev8: A8 => TypedExpression[A8, _]
): CompositeKey8[A1, A2, A3, A4, A5, A6, A7, A8] =
new CompositeKey8[A1, A2, A3, A4, A5, A6, A7, A8](t._1, t._2, t._3, t._4, t._5, t._6, t._7, t._8)
implicit def t9te[A1, A2, A3, A4, A5, A6, A7, A8, A9](t: (A1, A2, A3, A4, A5, A6, A7, A8, A9))(implicit
ev1: A1 => TypedExpression[A1, _],
ev2: A2 => TypedExpression[A2, _],
ev3: A3 => TypedExpression[A3, _],
ev4: A4 => TypedExpression[A4, _],
ev5: A5 => TypedExpression[A5, _],
ev6: A6 => TypedExpression[A6, _],
ev7: A7 => TypedExpression[A7, _],
ev8: A8 => TypedExpression[A8, _],
ev9: A9 => TypedExpression[A9, _]
): CompositeKey9[A1, A2, A3, A4, A5, A6, A7, A8, A9] =
new CompositeKey9[A1, A2, A3, A4, A5, A6, A7, A8, A9](t._1, t._2, t._3, t._4, t._5, t._6, t._7, t._8, t._9)
implicit def compositeKey2CanLookup[T <: CompositeKey](t: T): CanLookup = CompositeKeyLookup
implicit def simpleKey2CanLookup[T](t: T)(implicit ev: T => TypedExpression[T, _]): CanLookup =
new SimpleKeyLookup[T](ev)
// Case statements :
/*
def caseOf[A](expr: NumericalExpression[A]) = new CaseOfNumericalExpressionMatchStart(expr)
def caseOf[A](expr: NonNumericalExpression[A]) = new CaseOfNonNumericalExpressionMatchStart(expr)
def caseOf = new CaseOfConditionChainStart
*/
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy