scala.tools.nsc.ast.TreeGen.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scala-compiler Show documentation
Show all versions of scala-compiler Show documentation
Compiler for the SubScript extension of the Scala Programming Language
The newest version!
/* NSC -- new Scala compiler
* Copyright 2005-2013 LAMP/EPFL
* @author Martin Odersky
*/
package scala.tools.nsc
package ast
import scala.collection.mutable.ListBuffer
import symtab.Flags._
import scala.language.postfixOps
/** XXX to resolve: TreeGen only assumes global is a SymbolTable, but
* TreeDSL at the moment expects a Global. Can we get by with SymbolTable?
*/
abstract class TreeGen extends scala.reflect.internal.TreeGen with TreeDSL {
val global: Global
import global._
import definitions._
/** Builds a fully attributed, synthetic wildcard import node.
*/
def mkWildcardImport(pkg: Symbol): Import =
mkImportFromSelector(pkg, ImportSelector.wildList)
/** Builds a fully attributed, synthetic import node.
* import `qualSym`.{`name` => `toName`}
*/
def mkImport(qualSym: Symbol, name: Name, toName: Name): Import =
mkImportFromSelector(qualSym, ImportSelector(name, 0, toName, 0) :: Nil)
private def mkImportFromSelector(qualSym: Symbol, selector: List[ImportSelector]): Import = {
assert(qualSym ne null, this)
val qual = gen.mkAttributedStableRef(qualSym)
val importSym = (
NoSymbol
newImport NoPosition
setFlag SYNTHETIC
setInfo ImportType(qual)
)
val importTree = (
Import(qual, selector)
setSymbol importSym
setType NoType
)
importTree
}
// wrap the given expression in a SoftReference so it can be gc-ed
def mkSoftRef(expr: Tree): Tree = atPos(expr.pos) {
val constructor = SoftReferenceClass.info.nonPrivateMember(nme.CONSTRUCTOR).suchThat(_.paramss.flatten.size == 1)
NewFromConstructor(constructor, expr)
}
// Builds a tree of the form "{ lhs = rhs ; lhs }"
def mkAssignAndReturn(lhs: Symbol, rhs: Tree): Tree = {
def lhsRef = if (lhs.owner.isClass) Select(This(lhs.owner), lhs) else Ident(lhs)
Block(Assign(lhsRef, rhs) :: Nil, lhsRef)
}
def newModule(accessor: Symbol, tpe: Type) = {
val ps = tpe.typeSymbol.primaryConstructor.info.paramTypes
if (ps.isEmpty) New(tpe)
else New(tpe, This(accessor.owner.enclClass))
}
def mkRuntimeCall(meth: Name, args: List[Tree]): Tree =
mkRuntimeCall(meth, Nil, args)
def mkRuntimeCall(meth: Name, targs: List[Type], args: List[Tree]): Tree =
mkMethodCall(ScalaRunTimeModule, meth, targs, args)
def mkSysErrorCall(message: String): Tree =
mkMethodCall(Sys_error, List(Literal(Constant(message))))
/** A creator for a call to a scala.reflect.Manifest or ClassManifest factory method.
*
* @param full full or partial manifest (target will be Manifest or ClassManifest)
* @param constructor name of the factory method (e.g. "classType")
* @param tparg the type argument
* @param args value arguments
* @return the tree
*/
def mkManifestFactoryCall(full: Boolean, constructor: String, tparg: Type, args: List[Tree]): Tree =
mkMethodCall(
if (full) FullManifestModule else PartialManifestModule,
newTermName(constructor),
List(tparg),
args
)
/** Make a synchronized block on 'monitor'. */
def mkSynchronized(monitor: Tree, body: Tree): Tree =
Apply(Select(monitor, Object_synchronized), List(body))
def mkAppliedTypeForCase(clazz: Symbol): Tree = {
val numParams = clazz.typeParams.size
if (clazz.typeParams.isEmpty) Ident(clazz)
else AppliedTypeTree(Ident(clazz), 1 to numParams map (_ => Bind(tpnme.WILDCARD, EmptyTree)) toList)
}
def mkBindForCase(patVar: Symbol, clazz: Symbol, targs: List[Type]): Tree = {
Bind(patVar, Typed(Ident(nme.WILDCARD),
if (targs.isEmpty) mkAppliedTypeForCase(clazz)
else AppliedTypeTree(Ident(clazz), targs map TypeTree)
))
}
def wildcardStar(tree: Tree) =
atPos(tree.pos) { Typed(tree, Ident(tpnme.WILDCARD_STAR)) }
def paramToArg(vparam: Symbol): Tree =
paramToArg(Ident(vparam), isRepeatedParamType(vparam.tpe))
def paramToArg(vparam: ValDef): Tree =
paramToArg(Ident(vparam.name), treeInfo.isRepeatedParamType(vparam.tpt))
def paramToArg(arg: Ident, isRepeatedParam: Boolean): Tree =
if (isRepeatedParam) wildcardStar(arg) else arg
/** Make forwarder to method `target`, passing all parameters in `params` */
def mkForwarder(target: Tree, vparamss: List[List[Symbol]]) =
(target /: vparamss)((fn, vparams) => Apply(fn, vparams map paramToArg))
/** Applies a wrapArray call to an array, making it a WrappedArray.
* Don't let a reference type parameter be inferred, in case it's a singleton:
* apply the element type directly.
*/
def mkWrapArray(tree: Tree, elemtp: Type) = {
mkMethodCall(
PredefModule,
wrapArrayMethodName(elemtp),
if (isPrimitiveValueType(elemtp)) Nil else List(elemtp),
List(tree)
)
}
/** Cast `tree` to type `pt` by creating
* one of the calls of the form
*
* x.asInstanceOf[`pt`] up to phase uncurry
* x.asInstanceOf[`pt`]() if after uncurry but before erasure
* x.$asInstanceOf[`pt`]() if at or after erasure
*/
override def mkCast(tree: Tree, pt: Type): Tree = {
debuglog("casting " + tree + ":" + tree.tpe + " to " + pt + " at phase: " + phase)
assert(!tree.tpe.isInstanceOf[MethodType], tree)
assert(pt eq pt.normalize, tree +" : "+ debugString(pt) +" ~>"+ debugString(pt.normalize))
atPos(tree.pos) {
mkAsInstanceOf(tree, pt, any = !phase.next.erasedTypes, wrapInApply = isAtPhaseAfter(currentRun.uncurryPhase))
}
}
// drop annotations generated by CPS plugin etc, since its annotationchecker rejects T @cps[U] <: Any
// let's assume for now annotations don't affect casts, drop them there, and bring them back using the outer Typed tree
def mkCastPreservingAnnotations(tree: Tree, pt: Type) =
Typed(mkCast(tree, pt.withoutAnnotations.dealias), TypeTree(pt))
/** Generate a cast for tree Tree representing Array with
* elem type elemtp to expected type pt.
*/
def mkCastArray(tree: Tree, elemtp: Type, pt: Type) =
if (elemtp.typeSymbol == AnyClass && isPrimitiveValueType(tree.tpe.typeArgs.head))
mkCast(mkRuntimeCall(nme.toObjectArray, List(tree)), pt)
else
mkCast(tree, pt)
/** Translate names in Select/Ident nodes to type names.
*/
def convertToTypeName(tree: Tree): Option[RefTree] = tree match {
case Select(qual, name) => Some(Select(qual, name.toTypeName))
case Ident(name) => Some(Ident(name.toTypeName))
case _ => None
}
/** Try to convert Select(qual, name) to a SelectFromTypeTree.
*/
def convertToSelectFromType(qual: Tree, origName: Name) = convertToTypeName(qual) match {
case Some(qual1) => SelectFromTypeTree(qual1 setPos qual.pos, origName.toTypeName)
case _ => EmptyTree
}
/** Create a ValDef initialized to the given expression, setting the
* symbol to its packed type, and an function for creating Idents
* which refer to it.
*/
private def mkPackedValDef(expr: Tree, owner: Symbol, name: Name): (ValDef, () => Ident) = {
val packedType = typer.packedType(expr, owner)
val sym = owner.newValue(name.toTermName, expr.pos.makeTransparent, SYNTHETIC) setInfo packedType
(ValDef(sym, expr), () => Ident(sym) setPos sym.pos.focus setType expr.tpe)
}
/** Used in situations where you need to access value of an expression several times
*/
def evalOnce(expr: Tree, owner: Symbol, unit: CompilationUnit)(within: (() => Tree) => Tree): Tree = {
var used = false
if (treeInfo.isExprSafeToInline(expr)) {
within(() => if (used) expr.duplicate else { used = true; expr })
}
else {
val (valDef, identFn) = mkPackedValDef(expr, owner, unit.freshTermName("ev$"))
val containing = within(identFn)
ensureNonOverlapping(containing, List(expr))
Block(List(valDef), containing) setPos (containing.pos union expr.pos)
}
}
def evalOnceAll(exprs: List[Tree], owner: Symbol, unit: CompilationUnit)(within: (List[() => Tree]) => Tree): Tree = {
val vdefs = new ListBuffer[ValDef]
val exprs1 = new ListBuffer[() => Tree]
val used = new Array[Boolean](exprs.length)
var i = 0
for (expr <- exprs) {
if (treeInfo.isExprSafeToInline(expr)) {
exprs1 += {
val idx = i
() => if (used(idx)) expr.duplicate else { used(idx) = true; expr }
}
}
else {
val (valDef, identFn) = mkPackedValDef(expr, owner, unit.freshTermName("ev$"))
vdefs += valDef
exprs1 += identFn
}
i += 1
}
val prefix = vdefs.toList
val containing = within(exprs1.toList)
ensureNonOverlapping(containing, exprs)
if (prefix.isEmpty) containing
else Block(prefix, containing) setPos (prefix.head.pos union containing.pos)
}
/** Return the synchronized part of the double-checked locking idiom around the syncBody tree. It guards with `cond` and
* synchronizez on `clazz.this`. Additional statements can be included after initialization,
* (outside the synchronized block).
*
* The idiom works only if the condition is using a volatile field.
* @see http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
*/
def mkSynchronizedCheck(clazz: Symbol, cond: Tree, syncBody: List[Tree], stats: List[Tree]): Tree =
mkSynchronizedCheck(mkAttributedThis(clazz), cond, syncBody, stats)
def mkSynchronizedCheck(attrThis: Tree, cond: Tree, syncBody: List[Tree], stats: List[Tree]): Tree =
Block(mkSynchronized(
attrThis,
If(cond, Block(syncBody: _*), EmptyTree)) ::
stats: _*)
/** Creates a tree representing new Object { stats }.
* To make sure an anonymous subclass of Object is created,
* if there are no stats, a () is added.
*/
def mkAnonymousNew(stats: List[Tree]): Tree = {
val stats1 = if (stats.isEmpty) List(Literal(Constant(()))) else stats
mkNew(Nil, noSelfType, stats1, NoPosition, NoPosition)
}
/**
* Create a method based on a Function
*
* Used both to under `-Ydelambdafy:method` create a lifted function and
* under `-Ydelamdafy:inline` to create the apply method on the anonymous
* class.
*
* It creates a method definition with value params cloned from the
* original lambda. Then it calls a supplied function to create
* the body and types the result. Finally
* everything is wrapped up in a DefDef
*
* @param owner The owner for the new method
* @param name name for the new method
* @param additionalFlags flags to be put on the method in addition to FINAL
*/
def mkMethodFromFunction(localTyper: analyzer.Typer)
(fun: Function, owner: Symbol, name: TermName, additionalFlags: FlagSet = NoFlags) = {
val funParams = fun.vparams map (_.symbol)
val formals :+ restpe = fun.tpe.typeArgs
val methSym = owner.newMethod(name, fun.pos, FINAL | additionalFlags)
val paramSyms = map2(formals, fun.vparams) {
(tp, vparam) => methSym.newSyntheticValueParam(tp, vparam.name)
}
methSym setInfo MethodType(paramSyms, restpe.deconst)
fun.body.substituteSymbols(funParams, paramSyms)
fun.body changeOwner (fun.symbol -> methSym)
val methDef = DefDef(methSym, fun.body)
// Have to repack the type to avoid mismatches when existentials
// appear in the result - see SI-4869.
methDef.tpt setType localTyper.packedType(fun.body, methSym).deconst
methDef
}
}