All Downloads are FREE. Search and download functionalities are using the official Maven repository.

scala.collection.parallel.ParSeqLike.scala Maven / Gradle / Ivy

Go to download

Standard library for the SubScript extension of the Scala Programming Language

The newest version!
/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2003-2013, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://scala-lang.org/               **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */

package scala
package collection.parallel

import scala.collection.{ Parallel, SeqLike, GenSeqLike, GenSeq, GenIterable, Iterator }
import scala.collection.generic.DefaultSignalling
import scala.collection.generic.AtomicIndexFlag
import scala.collection.generic.CanBuildFrom
import scala.collection.generic.CanCombineFrom
import scala.collection.generic.VolatileAbort

import scala.collection.parallel.ParallelCollectionImplicits._

/** A template trait for sequences of type `ParSeq[T]`, representing
 *  parallel sequences with element type `T`.
 *
 *  $parallelseqinfo
 *
 *  @tparam T           the type of the elements contained in this collection
 *  @tparam Repr        the type of the actual collection containing the elements
 *  @tparam Sequential  the type of the sequential version of this parallel collection
 *
 *  @define parallelseqinfo
 *  Parallel sequences inherit the `Seq` trait. Their indexing and length computations
 *  are defined to be efficient. Like their sequential counterparts
 *  they always have a defined order of elements. This means they will produce resulting
 *  parallel sequences in the same way sequential sequences do. However, the order
 *  in which they perform bulk operations on elements to produce results is not defined and is generally
 *  nondeterministic. If the higher-order functions given to them produce no sideeffects,
 *  then this won't be noticeable.
 *
 *  This trait defines a new, more general `split` operation and reimplements the `split`
 *  operation of `ParallelIterable` trait using the new `split` operation.
 *
 *  @author Aleksandar Prokopec
 *  @since 2.9
 */
trait ParSeqLike[+T, +Repr <: ParSeq[T], +Sequential <: Seq[T] with SeqLike[T, Sequential]]
extends scala.collection.GenSeqLike[T, Repr]
   with ParIterableLike[T, Repr, Sequential] {
self =>

  protected[this] type SuperParIterator = IterableSplitter[T]

  /** A more refined version of the iterator found in the `ParallelIterable` trait,
   *  this iterator can be split into arbitrary subsets of iterators.
   *
   *  @return       an iterator that can be split into subsets of precise size
   */
  protected[parallel] def splitter: SeqSplitter[T]

  override def iterator: PreciseSplitter[T] = splitter

  override def size = length

  /** Used to iterate elements using indices */
  protected abstract class Elements(start: Int, val end: Int) extends SeqSplitter[T] with BufferedIterator[T] {
    private var i = start

    def hasNext = i < end

    def next(): T = if (i < end) {
      val x = self(i)
      i += 1
      x
    } else Iterator.empty.next()

    def head = self(i)

    final def remaining = end - i

    def dup = new Elements(i, end) {}

    def split = psplit(remaining / 2, remaining - remaining / 2)

    def psplit(sizes: Int*) = {
      val incr = sizes.scanLeft(0)(_ + _)
      for ((from, until) <- incr.init zip incr.tail) yield {
        new Elements(start + from, (start + until) min end) {}
      }
    }

    override def toString = "Elements(" + start + ", " + end + ")"
  }

  /* ParallelSeq methods */

  /** Returns the length of the longest segment of elements starting at
   *  a given position satisfying some predicate.
   *
   *  $indexsignalling
   *
   *  The index flag is initially set to maximum integer value.
   *
   *  @param p     the predicate used to test the elements
   *  @param from  the starting offset for the search
   *  @return      the length of the longest segment of elements starting at `from` and
   *               satisfying the predicate
   */
  def segmentLength(p: T => Boolean, from: Int): Int = if (from >= length) 0 else {
    val realfrom = if (from < 0) 0 else from
    val ctx = new DefaultSignalling with AtomicIndexFlag
    ctx.setIndexFlag(Int.MaxValue)
    tasksupport.executeAndWaitResult(new SegmentLength(p, 0, splitter.psplitWithSignalling(realfrom, length - realfrom)(1) assign ctx))._1
  }

  /** Finds the first element satisfying some predicate.
   *
   *  $indexsignalling
   *
   *  The index flag is initially set to maximum integer value.
   *
   *  @param p     the predicate used to test the elements
   *  @param from  the starting offset for the search
   *  @return      the index `>= from` of the first element of this $coll that satisfies the predicate `p`,
   *               or `-1`, if none exists
   */
  def indexWhere(p: T => Boolean, from: Int): Int = if (from >= length) -1 else {
    val realfrom = if (from < 0) 0 else from
    val ctx = new DefaultSignalling with AtomicIndexFlag
    ctx.setIndexFlag(Int.MaxValue)
    tasksupport.executeAndWaitResult(new IndexWhere(p, realfrom, splitter.psplitWithSignalling(realfrom, length - realfrom)(1) assign ctx))
  }

  /** Finds the last element satisfying some predicate.
   *
   *  $indexsignalling
   *
   *  The index flag is initially set to minimum integer value.
   *
   *  @param p     the predicate used to test the elements
   *  @param end   the maximum offset for the search
   *  @return      the index `<= end` of the first element of this $coll that satisfies the predicate `p`,
   *               or `-1`, if none exists
   */
  def lastIndexWhere(p: T => Boolean, end: Int): Int = if (end < 0) -1 else {
    val until = if (end >= length) length else end + 1
    val ctx = new DefaultSignalling with AtomicIndexFlag
    ctx.setIndexFlag(Int.MinValue)
    tasksupport.executeAndWaitResult(new LastIndexWhere(p, 0, splitter.psplitWithSignalling(until, length - until)(0) assign ctx))
  }

  def reverse: Repr = {
    tasksupport.executeAndWaitResult(new Reverse(() => newCombiner, splitter) mapResult { _.resultWithTaskSupport })
  }

  def reverseMap[S, That](f: T => S)(implicit bf: CanBuildFrom[Repr, S, That]): That = if (bf(repr).isCombiner) {
    tasksupport.executeAndWaitResult(
      new ReverseMap[S, That](f, () => bf(repr).asCombiner, splitter) mapResult { _.resultWithTaskSupport }
    )
  } else setTaskSupport(seq.reverseMap(f)(bf2seq(bf)), tasksupport)
  /*bf ifParallel { pbf =>
    tasksupport.executeAndWaitResult(new ReverseMap[S, That](f, pbf, splitter) mapResult { _.result })
  } otherwise seq.reverseMap(f)(bf2seq(bf))*/

  /** Tests whether this $coll contains the given sequence at a given index.
   *
   *  $abortsignalling
   *
   *  @tparam S      the element type of `that` parallel sequence
   *  @param that    the parallel sequence this sequence is being searched for
   *  @param offset  the starting offset for the search
   *  @return        `true` if there is a sequence `that` starting at `offset` in this sequence, `false` otherwise
   */
  def startsWith[S](that: GenSeq[S], offset: Int): Boolean = that ifParSeq { pthat =>
    if (offset < 0 || offset >= length) offset == length && pthat.length == 0
    else if (pthat.length == 0) true
    else if (pthat.length > length - offset) false
    else {
      val ctx = new DefaultSignalling with VolatileAbort
      tasksupport.executeAndWaitResult(
        new SameElements(splitter.psplitWithSignalling(offset, pthat.length)(1) assign ctx, pthat.splitter)
      )
    }
  } otherwise seq.startsWith(that, offset)

  override def sameElements[U >: T](that: GenIterable[U]): Boolean = that ifParSeq { pthat =>
    val ctx = new DefaultSignalling with VolatileAbort
    length == pthat.length && tasksupport.executeAndWaitResult(new SameElements(splitter assign ctx, pthat.splitter))
  } otherwise seq.sameElements(that)

  /** Tests whether this $coll ends with the given parallel sequence.
   *
   *  $abortsignalling
   *
   *  @tparam S       the type of the elements of `that` sequence
   *  @param that     the sequence to test
   *  @return         `true` if this $coll has `that` as a suffix, `false` otherwise
   */
  def endsWith[S](that: GenSeq[S]): Boolean = that ifParSeq { pthat =>
    if (that.length == 0) true
    else if (that.length > length) false
    else {
      val ctx = new DefaultSignalling with VolatileAbort
      val tlen = that.length
      tasksupport.executeAndWaitResult(new SameElements(splitter.psplitWithSignalling(length - tlen, tlen)(1) assign ctx, pthat.splitter))
    }
  } otherwise seq.endsWith(that)

  def patch[U >: T, That](from: Int, patch: GenSeq[U], replaced: Int)(implicit bf: CanBuildFrom[Repr, U, That]): That = {
    val realreplaced = replaced min (length - from)
    if (patch.isParSeq && bf(repr).isCombiner && (size - realreplaced + patch.size) > MIN_FOR_COPY) {
      val that = patch.asParSeq
      val pits = splitter.psplitWithSignalling(from, replaced, length - from - realreplaced)
      val cfactory = combinerFactory(() => bf(repr).asCombiner)
      val copystart = new Copy[U, That](cfactory, pits(0))
      val copymiddle = wrap {
        val tsk = new that.Copy[U, That](cfactory, that.splitter)
        tasksupport.executeAndWaitResult(tsk)
      }
      val copyend = new Copy[U, That](cfactory, pits(2))
      tasksupport.executeAndWaitResult(((copystart parallel copymiddle) { _ combine _ } parallel copyend) { _ combine _ } mapResult {
        _.resultWithTaskSupport
      })
    } else patch_sequential(from, patch.seq, replaced)
  }

  private def patch_sequential[U >: T, That](fromarg: Int, patch: Seq[U], r: Int)(implicit bf: CanBuildFrom[Repr, U, That]): That = {
    val from = 0 max fromarg
    val b = bf(repr)
    val repl = (r min (length - from)) max 0
    val pits = splitter.psplitWithSignalling(from, repl, length - from - repl)
    b ++= pits(0)
    b ++= patch
    b ++= pits(2)
    setTaskSupport(b.result(), tasksupport)
  }

  def updated[U >: T, That](index: Int, elem: U)(implicit bf: CanBuildFrom[Repr, U, That]): That = if (bf(repr).isCombiner) {
    tasksupport.executeAndWaitResult(
      new Updated(index, elem, combinerFactory(() => bf(repr).asCombiner), splitter) mapResult {
        _.resultWithTaskSupport
      }
    )
  } else setTaskSupport(seq.updated(index, elem)(bf2seq(bf)), tasksupport)
  /*bf ifParallel { pbf =>
    tasksupport.executeAndWaitResult(new Updated(index, elem, pbf, splitter) mapResult { _.result })
  } otherwise seq.updated(index, elem)(bf2seq(bf))*/

  def +:[U >: T, That](elem: U)(implicit bf: CanBuildFrom[Repr, U, That]): That = {
    patch(0, mutable.ParArray(elem), 0)
  }

  def :+[U >: T, That](elem: U)(implicit bf: CanBuildFrom[Repr, U, That]): That = {
    patch(length, mutable.ParArray(elem), 0)
  }

  def padTo[U >: T, That](len: Int, elem: U)(implicit bf: CanBuildFrom[Repr, U, That]): That = if (length < len) {
    patch(length, new immutable.Repetition(elem, len - length), 0)
  } else patch(length, Nil, 0)

  override def zip[U >: T, S, That](that: GenIterable[S])(implicit bf: CanBuildFrom[Repr, (U, S), That]): That = if (bf(repr).isCombiner && that.isParSeq) {
    val thatseq = that.asParSeq
    tasksupport.executeAndWaitResult(
      new Zip(length min thatseq.length, combinerFactory(() => bf(repr).asCombiner), splitter, thatseq.splitter) mapResult {
        _.resultWithTaskSupport
      }
    )
  } else super.zip(that)(bf)

  /** Tests whether every element of this $coll relates to the
   *  corresponding element of another parallel sequence by satisfying a test predicate.
   *
   *  $abortsignalling
   *
   *  @param   that    the other parallel sequence
   *  @param   p       the test predicate, which relates elements from both sequences
   *  @tparam  S       the type of the elements of `that`
   *  @return          `true` if both parallel sequences have the same length and
   *                   `p(x, y)` is `true` for all corresponding elements `x` of this $coll
   *                   and `y` of `that`, otherwise `false`
   */
  def corresponds[S](that: GenSeq[S])(p: (T, S) => Boolean): Boolean = that ifParSeq { pthat =>
    val ctx = new DefaultSignalling with VolatileAbort
    length == pthat.length && tasksupport.executeAndWaitResult(new Corresponds(p, splitter assign ctx, pthat.splitter))
  } otherwise seq.corresponds(that)(p)

  def diff[U >: T](that: GenSeq[U]): Repr = sequentially {
    _ diff that
  }

  /** Computes the multiset intersection between this $coll and another sequence.
   *
   *  @param that   the sequence of elements to intersect with.
   *  @tparam U     the element type of `that` parallel sequence
   *  @return       a new collection of type `That` which contains all elements of this $coll
   *                which also appear in `that`.
   *                If an element value `x` appears
   *                ''n'' times in `that`, then the first ''n'' occurrences of `x` will be retained
   *                in the result, but any following occurrences will be omitted.
   *
   *  @usecase def intersect(that: Seq[T]): $Coll[T]
   *    @inheritdoc
   *
   *    $mayNotTerminateInf
   *
   *    @return       a new $coll which contains all elements of this $coll
   *                  which also appear in `that`.
   *                  If an element value `x` appears
   *                  ''n'' times in `that`, then the first ''n'' occurrences of `x` will be retained
   *                  in the result, but any following occurrences will be omitted.
   */
  def intersect[U >: T](that: GenSeq[U]) = sequentially {
    _ intersect that
  }

  /** Builds a new $coll from this $coll without any duplicate elements.
   *  $willNotTerminateInf
   *
   *  @return  A new $coll which contains the first occurrence of every element of this $coll.
   */
  def distinct: Repr = sequentially {
    _.distinct
  }

  override def toString = seq.mkString(stringPrefix + "(", ", ", ")")

  override def toSeq = this.asInstanceOf[ParSeq[T]]

  @deprecated("use .seq.view", "2.11.0")
  override def view = seq.view

  /* tasks */

  protected[this] def down(p: IterableSplitter[_]) = p.asInstanceOf[SeqSplitter[T]]

  protected trait Accessor[R, Tp] extends super.Accessor[R, Tp] {
    protected[this] val pit: SeqSplitter[T]
  }

  protected trait Transformer[R, Tp] extends Accessor[R, Tp] with super.Transformer[R, Tp]

  protected[this] class SegmentLength(pred: T => Boolean, from: Int, protected[this] val pit: SeqSplitter[T])
  extends Accessor[(Int, Boolean), SegmentLength] {
    @volatile var result: (Int, Boolean) = null
    def leaf(prev: Option[(Int, Boolean)]) = if (from < pit.indexFlag) {
      val itsize = pit.remaining
      val seglen = pit.prefixLength(pred)
      result = (seglen, itsize == seglen)
      if (!result._2) pit.setIndexFlagIfLesser(from)
    } else result = (0, false)
    protected[this] def newSubtask(p: SuperParIterator) = throw new UnsupportedOperationException
    override def split = {
      val pits = pit.splitWithSignalling
      for ((p, untilp) <- pits zip pits.scanLeft(0)(_ + _.remaining)) yield new SegmentLength(pred, from + untilp, p)
    }
    override def merge(that: SegmentLength) = if (result._2) result = (result._1 + that.result._1, that.result._2)
    override def requiresStrictSplitters = true
  }

  protected[this] class IndexWhere(pred: T => Boolean, from: Int, protected[this] val pit: SeqSplitter[T])
  extends Accessor[Int, IndexWhere] {
    @volatile var result: Int = -1
    def leaf(prev: Option[Int]) = if (from < pit.indexFlag) {
      val r = pit.indexWhere(pred)
      if (r != -1) {
        result = from + r
        pit.setIndexFlagIfLesser(from)
      }
    }
    protected[this] def newSubtask(p: SuperParIterator) = unsupported
    override def split = {
      val pits = pit.splitWithSignalling
      for ((p, untilp) <- pits zip pits.scanLeft(from)(_ + _.remaining)) yield new IndexWhere(pred, untilp, p)
    }
    override def merge(that: IndexWhere) = result = if (result == -1) that.result else {
      if (that.result != -1) result min that.result else result
    }
    override def requiresStrictSplitters = true
  }

  protected[this] class LastIndexWhere(pred: T => Boolean, pos: Int, protected[this] val pit: SeqSplitter[T])
  extends Accessor[Int, LastIndexWhere] {
    @volatile var result: Int = -1
    def leaf(prev: Option[Int]) = if (pos > pit.indexFlag) {
      val r = pit.lastIndexWhere(pred)
      if (r != -1) {
        result = pos + r
        pit.setIndexFlagIfGreater(pos)
      }
    }
    protected[this] def newSubtask(p: SuperParIterator) = unsupported
    override def split = {
      val pits = pit.splitWithSignalling
      for ((p, untilp) <- pits zip pits.scanLeft(pos)(_ + _.remaining)) yield new LastIndexWhere(pred, untilp, p)
    }
    override def merge(that: LastIndexWhere) = result = if (result == -1) that.result else {
      if (that.result != -1) result max that.result else result
    }
    override def requiresStrictSplitters = true
  }

  protected[this] class Reverse[U >: T, This >: Repr](cbf: () => Combiner[U, This], protected[this] val pit: SeqSplitter[T])
  extends Transformer[Combiner[U, This], Reverse[U, This]] {
    @volatile var result: Combiner[U, This] = null
    def leaf(prev: Option[Combiner[U, This]]) = result = pit.reverse2combiner(reuse(prev, cbf()))
    protected[this] def newSubtask(p: SuperParIterator) = new Reverse(cbf, down(p))
    override def merge(that: Reverse[U, This]) = result = that.result combine result
  }

  protected[this] class ReverseMap[S, That](f: T => S, pbf: () => Combiner[S, That], protected[this] val pit: SeqSplitter[T])
  extends Transformer[Combiner[S, That], ReverseMap[S, That]] {
    @volatile var result: Combiner[S, That] = null
    def leaf(prev: Option[Combiner[S, That]]) = result = pit.reverseMap2combiner(f, pbf())
    protected[this] def newSubtask(p: SuperParIterator) = new ReverseMap(f, pbf, down(p))
    override def merge(that: ReverseMap[S, That]) = result = that.result combine result
  }

  protected[this] class SameElements[U >: T](protected[this] val pit: SeqSplitter[T], val otherpit: SeqSplitter[U])
  extends Accessor[Boolean, SameElements[U]] {
    @volatile var result: Boolean = true
    def leaf(prev: Option[Boolean]) = if (!pit.isAborted) {
      result = pit.sameElements(otherpit)
      if (!result) pit.abort()
    }
    protected[this] def newSubtask(p: SuperParIterator) = unsupported
    override def split = {
      val fp = pit.remaining / 2
      val sp = pit.remaining - fp
      for ((p, op) <- pit.psplitWithSignalling(fp, sp) zip otherpit.psplitWithSignalling(fp, sp)) yield new SameElements(p, op)
    }
    override def merge(that: SameElements[U]) = result = result && that.result
    override def requiresStrictSplitters = true
  }

  protected[this] class Updated[U >: T, That](pos: Int, elem: U, pbf: CombinerFactory[U, That], protected[this] val pit: SeqSplitter[T])
  extends Transformer[Combiner[U, That], Updated[U, That]] {
    @volatile var result: Combiner[U, That] = null
    def leaf(prev: Option[Combiner[U, That]]) = result = pit.updated2combiner(pos, elem, pbf())
    protected[this] def newSubtask(p: SuperParIterator) = unsupported
    override def split = {
      val pits = pit.splitWithSignalling
      for ((p, untilp) <- pits zip pits.scanLeft(0)(_ + _.remaining)) yield new Updated(pos - untilp, elem, pbf, p)
    }
    override def merge(that: Updated[U, That]) = result = result combine that.result
    override def requiresStrictSplitters = true
  }

  protected[this] class Zip[U >: T, S, That](len: Int, cf: CombinerFactory[(U, S), That], protected[this] val pit: SeqSplitter[T], val otherpit: SeqSplitter[S])
  extends Transformer[Combiner[(U, S), That], Zip[U, S, That]] {
    @volatile var result: Result = null
    def leaf(prev: Option[Result]) = result = pit.zip2combiner[U, S, That](otherpit, cf())
    protected[this] def newSubtask(p: SuperParIterator) = unsupported
    override def split = {
      val fp = len / 2
      val sp = len - len / 2
      val pits = pit.psplitWithSignalling(fp, sp)
      val opits = otherpit.psplitWithSignalling(fp, sp)
      Seq(
        new Zip(fp, cf, pits(0), opits(0)),
        new Zip(sp, cf, pits(1), opits(1))
      )
    }
    override def merge(that: Zip[U, S, That]) = result = result combine that.result
  }

  protected[this] class Corresponds[S](corr: (T, S) => Boolean, protected[this] val pit: SeqSplitter[T], val otherpit: SeqSplitter[S])
  extends Accessor[Boolean, Corresponds[S]] {
    @volatile var result: Boolean = true
    def leaf(prev: Option[Boolean]) = if (!pit.isAborted) {
      result = pit.corresponds(corr)(otherpit)
      if (!result) pit.abort()
    }
    protected[this] def newSubtask(p: SuperParIterator) = unsupported
    override def split = {
      val fp = pit.remaining / 2
      val sp = pit.remaining - fp
      for ((p, op) <- pit.psplitWithSignalling(fp, sp) zip otherpit.psplitWithSignalling(fp, sp)) yield new Corresponds(corr, p, op)
    }
    override def merge(that: Corresponds[S]) = result = result && that.result
    override def requiresStrictSplitters = true
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy