All Downloads are FREE. Search and download functionalities are using the official Maven repository.

scala.util.Sorting.scala Maven / Gradle / Ivy

Go to download

Standard library for the SubScript extension of the Scala Programming Language

The newest version!
/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2006-2009, Ross Judson           **
**  __\ \/ /__/ __ |/ /__/ __ |    http://scala-lang.org/               **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */

package scala
package util

import scala.reflect.{ ClassTag, classTag }
import scala.math.{ Ordering, max, min }

/** The Sorting object provides functions that can sort various kinds of
  * objects. You can provide a comparison function, or you can request a sort
  * of items that are viewable as [[scala.math.Ordered]]. Some sorts that
  * operate directly on a subset of value types are also provided. These
  * implementations are derived from those in the Sun JDK.
  *
  * Note that stability doesn't matter for value types, so use the `quickSort`
  * variants for those. `stableSort` is intended to be used with
  * objects when the prior ordering should be preserved, where possible.
  *
  * @author  Ross Judson
  * @version 1.0
  */
object Sorting {
  /** Quickly sort an array of Doubles. */
  def quickSort(a: Array[Double]) { sort1(a, 0, a.length) }

  /** Quickly sort an array of items with an implicit Ordering. */
  def quickSort[K: Ordering](a: Array[K]) { sort1(a, 0, a.length) }

  /** Quickly sort an array of Ints. */
  def quickSort(a: Array[Int]) { sort1(a, 0, a.length) }

  /** Quickly sort an array of Floats. */
  def quickSort(a: Array[Float]) { sort1(a, 0, a.length) }

  /** Sort an array of K where K is Ordered, preserving the existing order
    * where the values are equal. */
  def stableSort[K: ClassTag: Ordering](a: Array[K]) {
    stableSort(a, 0, a.length-1, new Array[K](a.length), Ordering[K].lt _)
  }

  /** Sorts an array of `K` given an ordering function `f`.
   *  `f` should return `true` iff its first parameter is strictly less than its second parameter.
   */
  def stableSort[K: ClassTag](a: Array[K], f: (K, K) => Boolean) {
    stableSort(a, 0, a.length-1, new Array[K](a.length), f)
  }

  /** Sorts an arbitrary sequence into an array, given a comparison function
   *  that should return `true` iff parameter one is strictly less than parameter two.
   *
   *  @param  a the sequence to be sorted.
   *  @param  f the comparison function.
   *  @return the sorted sequence of items.
   */
  def stableSort[K: ClassTag](a: Seq[K], f: (K, K) => Boolean): Array[K] = {
    val ret = a.toArray
    stableSort(ret, f)
    ret
  }

  /** Sorts an arbitrary sequence of items that are viewable as ordered. */
  def stableSort[K: ClassTag: Ordering](a: Seq[K]): Array[K] =
    stableSort(a, Ordering[K].lt _)

  /** Stably sorts a sequence of items given an extraction function that will
   *  return an ordered key from an item.
   *
   *  @param  a the sequence to be sorted.
   *  @param  f the comparison function.
   *  @return the sorted sequence of items.
   */
  def stableSort[K: ClassTag, M: Ordering](a: Seq[K], f: K => M): Array[K] =
    stableSort(a)(implicitly[ClassTag[K]], Ordering[M] on f)

  private def sort1[K: Ordering](x: Array[K], off: Int, len: Int) {
    val ord = Ordering[K]
    import ord._

    def swap(a: Int, b: Int) {
      val t = x(a)
      x(a) = x(b)
      x(b) = t
    }
    def vecswap(_a: Int, _b: Int, n: Int) {
      var a = _a
      var b = _b
      var i = 0
      while (i < n) {
        swap(a, b)
        i += 1
        a += 1
        b += 1
      }
    }
    def med3(a: Int, b: Int, c: Int) = {
      if (x(a) < x(b)) {
        if (x(b) < x(c)) b else if (x(a) < x(c)) c else a
      } else {
        if (x(b) > x(c)) b else if (x(a) > x(c)) c else a
      }
    }
    def sort2(off: Int, len: Int) {
      // Insertion sort on smallest arrays
      if (len < 7) {
        var i = off
        while (i < len + off) {
          var j = i
          while (j > off && x(j-1) > x(j)) {
            swap(j, j-1)
            j -= 1
          }
          i += 1
        }
      } else {
        // Choose a partition element, v
        var m = off + (len >> 1)        // Small arrays, middle element
        if (len > 7) {
          var l = off
          var n = off + len - 1
          if (len > 40) {        // Big arrays, pseudomedian of 9
            val s = len / 8
            l = med3(l, l+s, l+2*s)
            m = med3(m-s, m, m+s)
            n = med3(n-2*s, n-s, n)
          }
          m = med3(l, m, n) // Mid-size, med of 3
        }
        val v = x(m)

        // Establish Invariant: v* (v)* v*
        var a = off
        var b = a
        var c = off + len - 1
        var d = c
        var done = false
        while (!done) {
          while (b <= c && x(b) <= v) {
            if (x(b) equiv v) {
              swap(a, b)
              a += 1
            }
            b += 1
          }
          while (c >= b && x(c) >= v) {
            if (x(c) equiv v) {
              swap(c, d)
              d -= 1
            }
            c -= 1
          }
          if (b > c) {
            done = true
          } else {
            swap(b, c)
            c -= 1
            b += 1
          }
        }

        // Swap partition elements back to middle
        val n = off + len
        var s = math.min(a-off, b-a)
        vecswap(off, b-s, s)
        s = math.min(d-c, n-d-1)
        vecswap(b,   n-s, s)

        // Recursively sort non-partition-elements
        s = b - a
        if (s > 1)
          sort2(off, s)
        s = d - c
        if (s > 1)
          sort2(n-s, s)
      }
    }
    sort2(off, len)
  }

  private def sort1(x: Array[Int], off: Int, len: Int) {
    def swap(a: Int, b: Int) {
      val t = x(a)
      x(a) = x(b)
      x(b) = t
    }
    def vecswap(_a: Int, _b: Int, n: Int) {
      var a = _a
      var b = _b
      var i = 0
      while (i < n) {
        swap(a, b)
        i += 1
        a += 1
        b += 1
      }
    }
    def med3(a: Int, b: Int, c: Int) = {
      if (x(a) < x(b)) {
        if (x(b) < x(c)) b else if (x(a) < x(c)) c else a
      } else {
        if (x(b) > x(c)) b else if (x(a) > x(c)) c else a
      }
    }
    def sort2(off: Int, len: Int) {
      // Insertion sort on smallest arrays
      if (len < 7) {
        var i = off
        while (i < len + off) {
          var j = i
          while (j>off && x(j-1) > x(j)) {
            swap(j, j-1)
            j -= 1
          }
          i += 1
        }
      } else {
        // Choose a partition element, v
        var m = off + (len >> 1)        // Small arrays, middle element
        if (len > 7) {
          var l = off
          var n = off + len - 1
          if (len > 40) {        // Big arrays, pseudomedian of 9
            val s = len / 8
            l = med3(l, l+s, l+2*s)
            m = med3(m-s, m, m+s)
            n = med3(n-2*s, n-s, n)
          }
          m = med3(l, m, n) // Mid-size, med of 3
        }
        val v = x(m)

        // Establish Invariant: v* (v)* v*
        var a = off
        var b = a
        var c = off + len - 1
        var d = c
        var done = false
        while (!done) {
          while (b <= c && x(b) <= v) {
            if (x(b) == v) {
              swap(a, b)
              a += 1
            }
            b += 1
          }
          while (c >= b && x(c) >= v) {
            if (x(c) == v) {
              swap(c, d)
              d -= 1
            }
            c -= 1
          }
          if (b > c) {
            done = true
          } else {
            swap(b, c)
            c -= 1
            b += 1
          }
        }

        // Swap partition elements back to middle
        val n = off + len
        var s = math.min(a-off, b-a)
        vecswap(off, b-s, s)
        s = math.min(d-c, n-d-1)
        vecswap(b,   n-s, s)

        // Recursively sort non-partition-elements
        s = b - a
        if (s > 1)
          sort2(off, s)
        s = d - c
        if (s > 1)
          sort2(n-s, s)
      }
    }
    sort2(off, len)
  }

  private def sort1(x: Array[Double], off: Int, len: Int) {
    def swap(a: Int, b: Int) {
      val t = x(a)
      x(a) = x(b)
      x(b) = t
    }
    def vecswap(_a: Int, _b: Int, n: Int) {
      var a = _a
      var b = _b
      var i = 0
      while (i < n) {
        swap(a, b)
        i += 1
        a += 1
        b += 1
      }
    }
    def med3(a: Int, b: Int, c: Int) = {
      val ab = x(a) compare x(b)
      val bc = x(b) compare x(c)
      val ac = x(a) compare x(c)
      if (ab < 0) {
        if (bc < 0) b else if (ac < 0) c else a
      } else {
        if (bc > 0) b else if (ac > 0) c else a
      }
    }
    def sort2(off: Int, len: Int) {
      // Insertion sort on smallest arrays
      if (len < 7) {
        var i = off
        while (i < len + off) {
          var j = i
          while (j > off && (x(j-1) compare x(j)) > 0) {
            swap(j, j-1)
            j -= 1
          }
          i += 1
        }
      } else {
        // Choose a partition element, v
        var m = off + (len >> 1)        // Small arrays, middle element
        if (len > 7) {
          var l = off
          var n = off + len - 1
          if (len > 40) {        // Big arrays, pseudomedian of 9
            val s = len / 8
            l = med3(l, l+s, l+2*s)
            m = med3(m-s, m, m+s)
            n = med3(n-2*s, n-s, n)
          }
          m = med3(l, m, n) // Mid-size, med of 3
        }
        val v = x(m)

        // Establish Invariant: v* (v)* v*
        var a = off
        var b = a
        var c = off + len - 1
        var d = c
        var done = false
        while (!done) {
          var bv = x(b) compare v
          while (b <= c && bv <= 0) {
            if (bv == 0) {
              swap(a, b)
              a += 1
            }
            b += 1
            if (b <= c) bv = x(b) compare v
          }
          var cv = x(c) compare v
          while (c >= b && cv >= 0) {
            if (cv == 0) {
              swap(c, d)
              d -= 1
            }
            c -= 1
            if (c >= b) cv = x(c) compare v
          }
          if (b > c) {
            done = true
          } else {
            swap(b, c)
            c -= 1
            b += 1
          }
        }

        // Swap partition elements back to middle
        val n = off + len
        var s = math.min(a-off, b-a)
        vecswap(off, b-s, s)
        s = math.min(d-c, n-d-1)
        vecswap(b,   n-s, s)

        // Recursively sort non-partition-elements
        s = b - a
        if (s > 1)
          sort2(off, s)
        s = d - c
        if (s > 1)
          sort2(n-s, s)
      }
    }
    sort2(off, len)
  }

  private def sort1(x: Array[Float], off: Int, len: Int) {
    def swap(a: Int, b: Int) {
      val t = x(a)
      x(a) = x(b)
      x(b) = t
    }
    def vecswap(_a: Int, _b: Int, n: Int) {
      var a = _a
      var b = _b
      var i = 0
      while (i < n) {
        swap(a, b)
        i += 1
        a += 1
        b += 1
      }
    }
    def med3(a: Int, b: Int, c: Int) = {
      val ab = x(a) compare x(b)
      val bc = x(b) compare x(c)
      val ac = x(a) compare x(c)
      if (ab < 0) {
        if (bc < 0) b else if (ac < 0) c else a
      } else {
        if (bc > 0) b else if (ac > 0) c else a
      }
    }
    def sort2(off: Int, len: Int) {
      // Insertion sort on smallest arrays
      if (len < 7) {
        var i = off
        while (i < len + off) {
          var j = i
          while (j > off && (x(j-1) compare x(j)) > 0) {
            swap(j, j-1)
            j -= 1
          }
          i += 1
        }
      } else {
        // Choose a partition element, v
        var m = off + (len >> 1)        // Small arrays, middle element
        if (len > 7) {
          var l = off
          var n = off + len - 1
          if (len > 40) {        // Big arrays, pseudomedian of 9
            val s = len / 8
            l = med3(l, l+s, l+2*s)
            m = med3(m-s, m, m+s)
            n = med3(n-2*s, n-s, n)
          }
          m = med3(l, m, n) // Mid-size, med of 3
        }
        val v = x(m)

        // Establish Invariant: v* (v)* v*
        var a = off
        var b = a
        var c = off + len - 1
        var d = c
        var done = false
        while (!done) {
          var bv = x(b) compare v
          while (b <= c && bv <= 0) {
            if (bv == 0) {
              swap(a, b)
              a += 1
            }
            b += 1
            if (b <= c) bv = x(b) compare v
          }
          var cv = x(c) compare v
          while (c >= b && cv >= 0) {
            if (cv == 0) {
              swap(c, d)
              d -= 1
            }
            c -= 1
            if (c >= b) cv = x(c) compare v
          }
          if (b > c) {
            done = true
          } else {
            swap(b, c)
            c -= 1
            b += 1
          }
        }

        // Swap partition elements back to middle
        val n = off + len
        var s = math.min(a-off, b-a)
        vecswap(off, b-s, s)
        s = math.min(d-c, n-d-1)
        vecswap(b,   n-s, s)

        // Recursively sort non-partition-elements
        s = b - a
        if (s > 1)
          sort2(off, s)
        s = d - c
        if (s > 1)
          sort2(n-s, s)
      }
    }
    sort2(off, len)
  }

  private def stableSort[K : ClassTag](a: Array[K], lo: Int, hi: Int, scratch: Array[K], f: (K,K) => Boolean) {
    if (lo < hi) {
      val mid = (lo+hi) / 2
      stableSort(a, lo, mid, scratch, f)
      stableSort(a, mid+1, hi, scratch, f)
      var k, t_lo = lo
      var t_hi = mid + 1
      while (k <= hi) {
        if ((t_lo <= mid) && ((t_hi > hi) || (!f(a(t_hi), a(t_lo))))) {
          scratch(k) = a(t_lo)
          t_lo += 1
        } else {
          scratch(k) = a(t_hi)
          t_hi += 1
        }
        k += 1
      }
      k = lo
      while (k <= hi) {
        a(k) = scratch(k)
        k += 1
      }
    }
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy