All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jdesktop.swingx.graphics.ShadowRenderer Maven / Gradle / Ivy

There is a newer version: 1.6.5-1
Show newest version
/*
 * $Id: ShadowRenderer.java 4082 2011-11-15 18:39:43Z kschaefe $
 *
 * Copyright 2006 Sun Microsystems, Inc., 4150 Network Circle,
 * Santa Clara, California 95054, U.S.A. All rights reserved.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
package org.jdesktop.swingx.graphics;

import static org.jdesktop.swingx.util.GraphicsUtilities.createCompatibleTranslucentImage;

import java.awt.Color;
import java.awt.image.BufferedImage;
import java.beans.PropertyChangeListener;
import java.beans.PropertyChangeSupport;

import org.jdesktop.swingx.util.GraphicsUtilities;

/**
 * 

A shadow renderer generates a drop shadow for any given picture, respecting * the transparency channel if present. The resulting picture contains the * shadow only and to create a drop shadow effect you will need to stack the * original picture and the shadow generated by the renderer.

*

Shadow Properties

*

A shadow is defined by three properties: *

    *
  • size: The size, in pixels, of the shadow. This property also * defines the fuzziness.
  • *
  • opacity: The opacity, between 0.0 and 1.0, of the shadow.
  • *
  • color: The color of the shadow. Shadows are not meant to be * black only.
  • *
* You can set these properties using the provided mutators or the appropriate * constructor. Here are two ways of creating a green shadow of size 10 and * with an opacity of 50%: *
 * ShadowRenderer renderer = new ShadowRenderer(10, 0.5f, Color.GREEN);
 * // ..
 * renderer = new ShadowRenderer();
 * renderer.setSize(10);
 * renderer.setOpacity(0.5f);
 * renderer.setColor(Color.GREEN);
 * 
* The default constructor provides the following default values: *
    *
  • size: 5 pixels
  • *
  • opacity: 50%
  • *
  • color: Black
  • *

*

Generating a Shadow

*

A shadow is generated as a BufferedImage from another * BufferedImage. Once the renderer is set up, you must call * {@link #createShadow} to actually generate the shadow: *

 * ShadowRenderer renderer = new ShadowRenderer();
 * // renderer setup
 * BufferedImage shadow = renderer.createShadow(bufferedImage);
 * 

*

The generated image dimensions are computed as following:

*
 * width  = imageWidth  + 2 * shadowSize
 * height = imageHeight + 2 * shadowSize
 * 
*

Properties Changes

*

This renderer allows to register property change listeners with * {@link #addPropertyChangeListener}. Listening to properties changes is very * useful when you embed the renderer in a graphical component and give the API * user the ability to access the renderer. By listening to properties changes, * you can easily repaint the component when needed.

*

Threading Issues

*

ShadowRenderer is not guaranteed to be thread-safe.

* * @author Romain Guy * @author Sebastien Petrucci */ public class ShadowRenderer { /** *

Identifies a change to the size used to render the shadow.

*

When the property change event is fired, the old value and the new * value are provided as Integer instances.

*/ public static final String SIZE_CHANGED_PROPERTY = "shadow_size"; /** *

Identifies a change to the opacity used to render the shadow.

*

When the property change event is fired, the old value and the new * value are provided as Float instances.

*/ public static final String OPACITY_CHANGED_PROPERTY = "shadow_opacity"; /** *

Identifies a change to the color used to render the shadow.

*/ public static final String COLOR_CHANGED_PROPERTY = "shadow_color"; // size of the shadow in pixels (defines the fuzziness) private int size = 5; // opacity of the shadow private float opacity = 0.5f; // color of the shadow private Color color = Color.BLACK; // notifies listeners of properties changes private PropertyChangeSupport changeSupport; /** *

Creates a default good looking shadow generator. * The default shadow renderer provides the following default values: *

    *
  • size: 5 pixels
  • *
  • opacity: 50%
  • *
  • color: Black
  • *

*

These properties provide a regular, good looking shadow.

*/ public ShadowRenderer() { this(5, 0.5f, Color.BLACK); } /** *

A shadow renderer needs three properties to generate shadows. * These properties are:

*
    *
  • size: The size, in pixels, of the shadow. This property also * defines the fuzziness.
  • *
  • opacity: The opacity, between 0.0 and 1.0, of the shadow.
  • *
  • color: The color of the shadow. Shadows are not meant to be * black only.
  • *
* @param size the size of the shadow in pixels. Defines the fuzziness. * @param opacity the opacity of the shadow. * @param color the color of the shadow. */ public ShadowRenderer(final int size, final float opacity, final Color color) { //noinspection ThisEscapedInObjectConstruction changeSupport = new PropertyChangeSupport(this); setSize(size); setOpacity(opacity); setColor(color); } /** *

Add a PropertyChangeListener to the listener list. The listener is * registered for all properties. The same listener object may be added * more than once, and will be called as many times as it is added. If * listener is null, no exception is thrown and no action * is taken.

* @param listener the PropertyChangeListener to be added */ public void addPropertyChangeListener(PropertyChangeListener listener) { changeSupport.addPropertyChangeListener(listener); } /** *

Remove a PropertyChangeListener from the listener list. This removes * a PropertyChangeListener that was registered for all properties. If * listener was added more than once to the same event source, * it will be notified one less time after being removed. If * listener is null, or was never added, no exception is thrown * and no action is taken.

* @param listener the PropertyChangeListener to be removed */ public void removePropertyChangeListener(PropertyChangeListener listener) { changeSupport.removePropertyChangeListener(listener); } /** *

Gets the color used by the renderer to generate shadows.

* @return this renderer's shadow color */ public Color getColor() { return color; } /** *

Sets the color used by the renderer to generate shadows.

*

Consecutive calls to {@link #createShadow} will all use this color * until it is set again.

*

If the color provided is null, the previous color will be retained.

* @param shadowColor the generated shadows color */ public void setColor(final Color shadowColor) { if (shadowColor != null) { Color oldColor = this.color; this.color = shadowColor; changeSupport.firePropertyChange(COLOR_CHANGED_PROPERTY, oldColor, this.color); } } /** *

Gets the opacity used by the renderer to generate shadows.

*

The opacity is comprised between 0.0f and 1.0f; 0.0f being fully * transparent and 1.0f fully opaque.

* @return this renderer's shadow opacity */ public float getOpacity() { return opacity; } /** *

Sets the opacity used by the renderer to generate shadows.

*

Consecutive calls to {@link #createShadow} will all use this opacity * until it is set again.

*

The opacity is comprised between 0.0f and 1.0f; 0.0f being fully * transparent and 1.0f fully opaque. If you provide a value out of these * boundaries, it will be restrained to the closest boundary.

* @param shadowOpacity the generated shadows opacity */ public void setOpacity(final float shadowOpacity) { float oldOpacity = this.opacity; if (shadowOpacity < 0.0) { this.opacity = 0.0f; } else if (shadowOpacity > 1.0f) { this.opacity = 1.0f; } else { this.opacity = shadowOpacity; } changeSupport.firePropertyChange(OPACITY_CHANGED_PROPERTY, oldOpacity, this.opacity); } /** *

Gets the size in pixel used by the renderer to generate shadows.

* @return this renderer's shadow size */ public int getSize() { return size; } /** *

Sets the size, in pixels, used by the renderer to generate shadows.

*

The size defines the blur radius applied to the shadow to create the * fuzziness.

*

There is virtually no limit to the size. The size cannot be negative. * If you provide a negative value, the size will be 0 instead.

* @param shadowSize the generated shadows size in pixels (fuzziness) */ public void setSize(final int shadowSize) { int oldSize = this.size; if (shadowSize < 0) { this.size = 0; } else { this.size = shadowSize; } changeSupport.firePropertyChange(SIZE_CHANGED_PROPERTY, new Integer(oldSize), new Integer(this.size)); } /** *

Generates the shadow for a given picture and the current properties * of the renderer.

*

The generated image dimensions are computed as following:

*
     * width  = imageWidth  + 2 * shadowSize
     * height = imageHeight + 2 * shadowSize
     * 
* @param image the picture from which the shadow must be cast * @return the picture containing the shadow of image */ public BufferedImage createShadow(final BufferedImage image) { // Written by Sesbastien Petrucci int shadowSize = size * 2; int srcWidth = image.getWidth(); int srcHeight = image.getHeight(); int dstWidth = srcWidth + shadowSize; int dstHeight = srcHeight + shadowSize; int left = size; int right = shadowSize - left; int yStop = dstHeight - right; int shadowRgb = color.getRGB() & 0x00FFFFFF; int[] aHistory = new int[shadowSize]; int historyIdx; int aSum; BufferedImage dst = createCompatibleTranslucentImage(dstWidth, dstHeight); int[] dstBuffer = new int[dstWidth * dstHeight]; int[] srcBuffer = new int[srcWidth * srcHeight]; GraphicsUtilities.getPixels(image, 0, 0, srcWidth, srcHeight, srcBuffer); int lastPixelOffset = right * dstWidth; float hSumDivider = 1.0f / shadowSize; float vSumDivider = opacity / shadowSize; int[] hSumLookup = new int[256 * shadowSize]; for (int i = 0; i < hSumLookup.length; i++) { hSumLookup[i] = (int) (i * hSumDivider); } int[] vSumLookup = new int[256 * shadowSize]; for (int i = 0; i < vSumLookup.length; i++) { vSumLookup[i] = (int) (i * vSumDivider); } int srcOffset; // horizontal pass : extract the alpha mask from the source picture and // blur it into the destination picture for (int srcY = 0, dstOffset = left * dstWidth; srcY < srcHeight; srcY++) { // first pixels are empty for (historyIdx = 0; historyIdx < shadowSize; ) { aHistory[historyIdx++] = 0; } aSum = 0; historyIdx = 0; srcOffset = srcY * srcWidth; // compute the blur average with pixels from the source image for (int srcX = 0; srcX < srcWidth; srcX++) { int a = hSumLookup[aSum]; dstBuffer[dstOffset++] = a << 24; // store the alpha value only // the shadow color will be added in the next pass aSum -= aHistory[historyIdx]; // substract the oldest pixel from the sum // extract the new pixel ... a = srcBuffer[srcOffset + srcX] >>> 24; aHistory[historyIdx] = a; // ... and store its value into history aSum += a; // ... and add its value to the sum if (++historyIdx >= shadowSize) { historyIdx -= shadowSize; } } // blur the end of the row - no new pixels to grab for (int i = 0; i < shadowSize; i++) { int a = hSumLookup[aSum]; dstBuffer[dstOffset++] = a << 24; // substract the oldest pixel from the sum ... and nothing new to add ! aSum -= aHistory[historyIdx]; if (++historyIdx >= shadowSize) { historyIdx -= shadowSize; } } } // vertical pass for (int x = 0, bufferOffset = 0; x < dstWidth; x++, bufferOffset = x) { aSum = 0; // first pixels are empty for (historyIdx = 0; historyIdx < left;) { aHistory[historyIdx++] = 0; } // and then they come from the dstBuffer for (int y = 0; y < right; y++, bufferOffset += dstWidth) { int a = dstBuffer[bufferOffset] >>> 24; // extract alpha aHistory[historyIdx++] = a; // store into history aSum += a; // and add to sum } bufferOffset = x; historyIdx = 0; // compute the blur avera`ge with pixels from the previous pass for (int y = 0; y < yStop; y++, bufferOffset += dstWidth) { int a = vSumLookup[aSum]; dstBuffer[bufferOffset] = a << 24 | shadowRgb; // store alpha value + shadow color aSum -= aHistory[historyIdx]; // substract the oldest pixel from the sum a = dstBuffer[bufferOffset + lastPixelOffset] >>> 24; // extract the new pixel ... aHistory[historyIdx] = a; // ... and store its value into history aSum += a; // ... and add its value to the sum if (++historyIdx >= shadowSize) { historyIdx -= shadowSize; } } // blur the end of the column - no pixels to grab anymore for (int y = yStop; y < dstHeight; y++, bufferOffset += dstWidth) { int a = vSumLookup[aSum]; dstBuffer[bufferOffset] = a << 24 | shadowRgb; aSum -= aHistory[historyIdx]; // substract the oldest pixel from the sum if (++historyIdx >= shadowSize) { historyIdx -= shadowSize; } } } GraphicsUtilities.setPixels(dst, 0, 0, dstWidth, dstHeight, dstBuffer); return dst; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy