All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jdesktop.swingx.geom.Morphing2D Maven / Gradle / Ivy

The newest version!
/*
 * $Id: Morphing2D.java 3863 2010-10-26 02:53:32Z kschaefe $
 *
 * Copyright 2006 Sun Microsystems, Inc., 4150 Network Circle,
 * Santa Clara, California 95054, U.S.A. All rights reserved.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
package org.jdesktop.swingx.geom;

import java.awt.Rectangle;
import java.awt.Shape;
import java.awt.geom.AffineTransform;
import java.awt.geom.FlatteningPathIterator;
import java.awt.geom.IllegalPathStateException;
import java.awt.geom.PathIterator;
import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;

/**
 * 

A morphing shape is a shape which geometry is constructed from two * other shapes: a start shape and an end shape.

*

The morphing property of a morphing shape defines the amount of * transformation applied to the start shape to turn it into the end shape.

*

Both shapes must have the same winding rule.

* * @author Jim Graham * @author Romain Guy (Maintainer) */ public class Morphing2D implements Shape { private double morph; private Geometry startGeometry; private Geometry endGeometry; /** *

Creates a new morphing shape. A morphing shape can be used to turn * one shape into another one. The transformation can be controlled by the * morph property.

* * @param startShape the shape to morph from * @param endShape the shape to morph to * * @throws IllegalPathStateException if the shapes do not have the same * winding rule * @see #getMorphing() * @see #setMorphing(double) */ public Morphing2D(Shape startShape, Shape endShape) { startGeometry = new Geometry(startShape); endGeometry = new Geometry(endShape); if (startGeometry.getWindingRule() != endGeometry.getWindingRule()) { throw new IllegalPathStateException("shapes must use same " + "winding rule"); } double tvals0[] = startGeometry.getTvals(); double tvals1[] = endGeometry.getTvals(); double masterTvals[] = mergeTvals(tvals0, tvals1); startGeometry.setTvals(masterTvals); endGeometry.setTvals(masterTvals); } /** *

Returns the morphing value between the two shapes.

* * @return the morphing value between the two shapes * * @see #setMorphing(double) */ public double getMorphing() { return morph; } /** *

Sets the morphing value between the two shapes. This value controls * the transformation from the start shape to the end shape. A value of 0.0 * is the start shape. A value of 1.0 is the end shape. A value of 0.5 is a * new shape, morphed half way from the start shape to the end shape.

*

The specified value should be between 0.0 and 1.0. If not, the value * is clamped in the appropriate range.

* * @param morph the morphing value between the two shapes * * @see #getMorphing() */ public void setMorphing(double morph) { if (morph > 1) { morph = 1; } else if (morph >= 0) { // morphing is finite, not NaN, and in range } else { // morph is < 0 or NaN morph = 0; } this.morph = morph; } private static double interp(double v0, double v1, double t) { return (v0 + ((v1 - v0) * t)); } private static double[] mergeTvals(double tvals0[], double tvals1[]) { int i0 = 0; int i1 = 0; int numtvals = 0; while (i0 < tvals0.length && i1 < tvals1.length) { double t0 = tvals0[i0]; double t1 = tvals1[i1]; if (t0 <= t1) { i0++; } if (t1 <= t0) { i1++; } numtvals++; } double newtvals[] = new double[numtvals]; i0 = 0; i1 = 0; numtvals = 0; while (i0 < tvals0.length && i1 < tvals1.length) { double t0 = tvals0[i0]; double t1 = tvals1[i1]; if (t0 <= t1) { newtvals[numtvals] = t0; i0++; } if (t1 <= t0) { newtvals[numtvals] = t1; i1++; } numtvals++; } return newtvals; } /** * {@inheritDoc} */ @Override public Rectangle getBounds() { return getBounds2D().getBounds(); } /** * {@inheritDoc} */ @Override public Rectangle2D getBounds2D() { int n = startGeometry.getNumCoords(); double xmin, ymin, xmax, ymax; xmin = xmax = interp(startGeometry.getCoord(0), endGeometry.getCoord(0), morph); ymin = ymax = interp(startGeometry.getCoord(1), endGeometry.getCoord(1), morph); for (int i = 2; i < n; i += 2) { double x = interp(startGeometry.getCoord(i), endGeometry.getCoord(i), morph); double y = interp(startGeometry.getCoord(i + 1), endGeometry.getCoord(i + 1), morph); if (xmin > x) { xmin = x; } if (ymin > y) { ymin = y; } if (xmax < x) { xmax = x; } if (ymax < y) { ymax = y; } } return new Rectangle2D.Double(xmin, ymin, xmax - xmin, ymax - ymin); } /** * {@inheritDoc} */ @Override public boolean contains(double x, double y) { throw new InternalError("unimplemented"); } /** * {@inheritDoc} */ @Override public boolean contains(Point2D p) { return contains(p.getX(), p.getY()); } /** * {@inheritDoc} */ @Override public boolean intersects(double x, double y, double w, double h) { throw new InternalError("unimplemented"); } /** * {@inheritDoc} */ @Override public boolean intersects(Rectangle2D r) { return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } /** * {@inheritDoc} */ @Override public boolean contains(double x, double y, double w, double h) { throw new InternalError("unimplemented"); } /** * {@inheritDoc} */ @Override public boolean contains(Rectangle2D r) { return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } /** * {@inheritDoc} */ @Override public PathIterator getPathIterator(AffineTransform at) { return new Iterator(at, startGeometry, endGeometry, morph); } /** * {@inheritDoc} */ @Override public PathIterator getPathIterator(AffineTransform at, double flatness) { return new FlatteningPathIterator(getPathIterator(at), flatness); } private static class Geometry { static final double THIRD = (1.0 / 3.0); static final double MIN_LEN = 0.001; double bezierCoords[]; int numCoords; int windingrule; double myTvals[]; public Geometry(Shape s) { // Multiple of 6 plus 2 more for initial moveto bezierCoords = new double[20]; PathIterator pi = s.getPathIterator(null); windingrule = pi.getWindingRule(); if (pi.isDone()) { // We will have 1 segment and it will be all zeros // It will have 8 coordinates (2 for moveto, 6 for cubic) numCoords = 8; } double coords[] = new double[6]; int type = pi.currentSegment(coords); pi.next(); if (type != PathIterator.SEG_MOVETO) { throw new IllegalPathStateException("missing initial moveto"); } double curx = bezierCoords[0] = coords[0]; double cury = bezierCoords[1] = coords[1]; double newx, newy; numCoords = 2; while (!pi.isDone()) { if (numCoords + 6 > bezierCoords.length) { // Keep array size to a multiple of 6 plus 2 int newsize = (numCoords - 2) * 2 + 2; double newCoords[] = new double[newsize]; System.arraycopy(bezierCoords, 0, newCoords, 0, numCoords); bezierCoords = newCoords; } switch (pi.currentSegment(coords)) { case PathIterator.SEG_MOVETO: throw new InternalError( "Cannot handle multiple subpaths"); case PathIterator.SEG_CLOSE: if (curx == bezierCoords[0] && cury == bezierCoords[1]) { break; } coords[0] = bezierCoords[0]; coords[1] = bezierCoords[1]; /* NO BREAK */ case PathIterator.SEG_LINETO: newx = coords[0]; newy = coords[1]; // A third of the way from curxy to newxy: bezierCoords[numCoords++] = interp(curx, newx, THIRD); bezierCoords[numCoords++] = interp(cury, newy, THIRD); // A third of the way from newxy back to curxy: bezierCoords[numCoords++] = interp(newx, curx, THIRD); bezierCoords[numCoords++] = interp(newy, cury, THIRD); bezierCoords[numCoords++] = curx = newx; bezierCoords[numCoords++] = cury = newy; break; case PathIterator.SEG_QUADTO: double ctrlx = coords[0]; double ctrly = coords[1]; newx = coords[2]; newy = coords[3]; // A third of the way from ctrlxy back to curxy: bezierCoords[numCoords++] = interp(ctrlx, curx, THIRD); bezierCoords[numCoords++] = interp(ctrly, cury, THIRD); // A third of the way from ctrlxy to newxy: bezierCoords[numCoords++] = interp(ctrlx, newx, THIRD); bezierCoords[numCoords++] = interp(ctrly, newy, THIRD); bezierCoords[numCoords++] = curx = newx; bezierCoords[numCoords++] = cury = newy; break; case PathIterator.SEG_CUBICTO: bezierCoords[numCoords++] = coords[0]; bezierCoords[numCoords++] = coords[1]; bezierCoords[numCoords++] = coords[2]; bezierCoords[numCoords++] = coords[3]; bezierCoords[numCoords++] = curx = coords[4]; bezierCoords[numCoords++] = cury = coords[5]; break; } pi.next(); } // Add closing segment if either: // - we only have initial moveto - expand it to an empty cubic // - or we are not back to the starting point if ((numCoords < 8) || curx != bezierCoords[0] || cury != bezierCoords[1]) { newx = bezierCoords[0]; newy = bezierCoords[1]; // A third of the way from curxy to newxy: bezierCoords[numCoords++] = interp(curx, newx, THIRD); bezierCoords[numCoords++] = interp(cury, newy, THIRD); // A third of the way from newxy back to curxy: bezierCoords[numCoords++] = interp(newx, curx, THIRD); bezierCoords[numCoords++] = interp(newy, cury, THIRD); bezierCoords[numCoords++] = newx; bezierCoords[numCoords++] = newy; } // Now find the segment endpoint with the smallest Y coordinate int minPt = 0; double minX = bezierCoords[0]; double minY = bezierCoords[1]; for (int ci = 6; ci < numCoords; ci += 6) { double x = bezierCoords[ci]; double y = bezierCoords[ci + 1]; if (y < minY || (y == minY && x < minX)) { minPt = ci; minX = x; minY = y; } } // If the smallest Y coordinate is not the first coordinate, // rotate the points so that it is... if (minPt > 0) { // Keep in mind that first 2 coords == last 2 coords double newCoords[] = new double[numCoords]; // Copy all coordinates from minPt to the end of the // array to the beginning of the new array System.arraycopy(bezierCoords, minPt, newCoords, 0, numCoords - minPt); // Now we do not want to copy 0,1 as they are duplicates // of the last 2 coordinates which we just copied. So // we start the source copy at index 2, but we still // copy a full minPt coordinates which copies the two // coordinates that were at minPt to the last two elements // of the array, thus ensuring that thew new array starts // and ends with the same pair of coordinates... System.arraycopy(bezierCoords, 2, newCoords, numCoords - minPt, minPt); bezierCoords = newCoords; } /* Clockwise enforcement: * - This technique is based on the formula for calculating * the area of a Polygon. The standard formula is: * Area(Poly) = 1/2 * sum(x[i]*y[i+1] - x[i+1]y[i]) * - The returned area is negative if the polygon is * "mostly clockwise" and positive if the polygon is * "mostly counter-clockwise". * - One failure mode of the Area calculation is if the * Polygon is self-intersecting. This is due to the * fact that the areas on each side of the self-intersection * are bounded by segments which have opposite winding * direction. Thus, those areas will have opposite signs * on the accumulation of their area summations and end * up canceling each other out partially. * - This failure mode of the algorithm in determining the * exact magnitude of the area is not actually a big problem * for our needs here since we are only using the sign of * the resulting area to figure out the overall winding * direction of the path. If self-intersections cause * different parts of the path to disagree as to the * local winding direction, that is no matter as we just * wait for the final answer to tell us which winding * direction had greater representation. If the final * result is zero then the path was equal parts clockwise * and counter-clockwise and we do not care about which * way we order it as either way will require half of the * path to unwind and re-wind itself. */ double area = 0; // Note that first and last points are the same so we // do not need to process coords[0,1] against coords[n-2,n-1] curx = bezierCoords[0]; cury = bezierCoords[1]; for (int i = 2; i < numCoords; i += 2) { newx = bezierCoords[i]; newy = bezierCoords[i + 1]; area += curx * newy - newx * cury; curx = newx; cury = newy; } if (area < 0) { /* The area is negative so the shape was clockwise * in a Euclidean sense. But, our screen coordinate * systems have the origin in the upper left so they * are flipped. Thus, this path "looks" ccw on the * screen so we are flipping it to "look" clockwise. * Note that the first and last points are the same * so we do not need to swap them. * (Not that it matters whether the paths end up cw * or ccw in the end as long as all of them are the * same, but above we called this section "Clockwise * Enforcement", so we do not want to be liars. ;-) */ // Note that [0,1] do not need to be swapped with [n-2,n-1] // So first pair to swap is [2,3] and [n-4,n-3] int i = 2; int j = numCoords - 4; while (i < j) { curx = bezierCoords[i]; cury = bezierCoords[i + 1]; bezierCoords[i] = bezierCoords[j]; bezierCoords[i + 1] = bezierCoords[j + 1]; bezierCoords[j] = curx; bezierCoords[j + 1] = cury; i += 2; j -= 2; } } } public int getWindingRule() { return windingrule; } public int getNumCoords() { return numCoords; } public double getCoord(int i) { return bezierCoords[i]; } public double[] getTvals() { if (myTvals != null) { return myTvals; } // assert(numCoords >= 8); // assert(((numCoords - 2) % 6) == 0); double tvals[] = new double[(numCoords - 2) / 6 + 1]; // First calculate total "length" of path // Length of each segment is averaged between // the length between the endpoints (a lower bound for a cubic) // and the length of the control polygon (an upper bound) double segx = bezierCoords[0]; double segy = bezierCoords[1]; double tlen = 0; int ci = 2; int ti = 0; while (ci < numCoords) { double prevx, prevy, newx, newy; prevx = segx; prevy = segy; newx = bezierCoords[ci++]; newy = bezierCoords[ci++]; prevx -= newx; prevy -= newy; double len = Math.sqrt(prevx * prevx + prevy * prevy); prevx = newx; prevy = newy; newx = bezierCoords[ci++]; newy = bezierCoords[ci++]; prevx -= newx; prevy -= newy; len += Math.sqrt(prevx * prevx + prevy * prevy); prevx = newx; prevy = newy; newx = bezierCoords[ci++]; newy = bezierCoords[ci++]; prevx -= newx; prevy -= newy; len += Math.sqrt(prevx * prevx + prevy * prevy); // len is now the total length of the control polygon segx -= newx; segy -= newy; len += Math.sqrt(segx * segx + segy * segy); // len is now sum of linear length and control polygon length len /= 2; // len is now average of the two lengths /* If the result is zero length then we will have problems * below trying to do the math and bookkeeping to split * the segment or pair it against the segments in the * other shape. Since these lengths are just estimates * to map the segments of the two shapes onto corresponding * segments of "approximately the same length", we will * simply fudge the length of this segment to be at least * a minimum value and it will simply grow from zero or * near zero length to a non-trivial size as it morphs. */ if (len < MIN_LEN) { len = MIN_LEN; } tlen += len; tvals[ti++] = tlen; segx = newx; segy = newy; } // Now set tvals for each segment to its proportional // part of the length double prevt = tvals[0]; tvals[0] = 0; for (ti = 1; ti < tvals.length - 1; ti++) { double nextt = tvals[ti]; tvals[ti] = prevt / tlen; prevt = nextt; } tvals[ti] = 1; return (myTvals = tvals); } public void setTvals(double newTvals[]) { double oldCoords[] = bezierCoords; double newCoords[] = new double[2 + (newTvals.length - 1) * 6]; double oldTvals[] = getTvals(); int oldci = 0; double x0, xc0, xc1, x1; double y0, yc0, yc1, y1; x0 = xc0 = xc1 = x1 = oldCoords[oldci++]; y0 = yc0 = yc1 = y1 = oldCoords[oldci++]; int newci = 0; newCoords[newci++] = x0; newCoords[newci++] = y0; double t0 = 0; double t1 = 0; int oldti = 1; int newti = 1; while (newti < newTvals.length) { if (t0 >= t1) { x0 = x1; y0 = y1; xc0 = oldCoords[oldci++]; yc0 = oldCoords[oldci++]; xc1 = oldCoords[oldci++]; yc1 = oldCoords[oldci++]; x1 = oldCoords[oldci++]; y1 = oldCoords[oldci++]; t1 = oldTvals[oldti++]; } double nt = newTvals[newti++]; // assert(nt > t0); if (nt < t1) { // Make nt proportional to [t0 => t1] range double relt = (nt - t0) / (t1 - t0); newCoords[newci++] = x0 = interp(x0, xc0, relt); newCoords[newci++] = y0 = interp(y0, yc0, relt); xc0 = interp(xc0, xc1, relt); yc0 = interp(yc0, yc1, relt); xc1 = interp(xc1, x1, relt); yc1 = interp(yc1, y1, relt); newCoords[newci++] = x0 = interp(x0, xc0, relt); newCoords[newci++] = y0 = interp(y0, yc0, relt); xc0 = interp(xc0, xc1, relt); yc0 = interp(yc0, yc1, relt); newCoords[newci++] = x0 = interp(x0, xc0, relt); newCoords[newci++] = y0 = interp(y0, yc0, relt); } else { newCoords[newci++] = xc0; newCoords[newci++] = yc0; newCoords[newci++] = xc1; newCoords[newci++] = yc1; newCoords[newci++] = x1; newCoords[newci++] = y1; } t0 = nt; } bezierCoords = newCoords; numCoords = newCoords.length; myTvals = newTvals; } } private static class Iterator implements PathIterator { AffineTransform at; Geometry g0; Geometry g1; double t; int cindex; public Iterator(AffineTransform at, Geometry g0, Geometry g1, double t) { this.at = at; this.g0 = g0; this.g1 = g1; this.t = t; } /** * {@inheritDoc} */ @Override public int getWindingRule() { return g0.getWindingRule(); } /** * {@inheritDoc} */ @Override public boolean isDone() { return (cindex > g0.getNumCoords()); } /** * {@inheritDoc} */ @Override public void next() { if (cindex == 0) { cindex = 2; } else { cindex += 6; } } double dcoords[]; /** * {@inheritDoc} */ @Override public int currentSegment(float[] coords) { if (dcoords == null) { dcoords = new double[6]; } int type = currentSegment(dcoords); if (type != SEG_CLOSE) { coords[0] = (float) dcoords[0]; coords[1] = (float) dcoords[1]; if (type != SEG_MOVETO) { coords[2] = (float) dcoords[2]; coords[3] = (float) dcoords[3]; coords[4] = (float) dcoords[4]; coords[5] = (float) dcoords[5]; } } return type; } /** * {@inheritDoc} */ @Override public int currentSegment(double[] coords) { int type; int n; if (cindex == 0) { type = SEG_MOVETO; n = 2; } else if (cindex >= g0.getNumCoords()) { type = SEG_CLOSE; n = 0; } else { type = SEG_CUBICTO; n = 6; } if (n > 0) { for (int i = 0; i < n; i++) { coords[i] = interp(g0.getCoord(cindex + i), g1.getCoord(cindex + i), t); } if (at != null) { at.transform(coords, 0, coords, 0, n / 2); } } return type; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy