
org.tensorflow.op.Ops Maven / Gradle / Ivy
package org.tensorflow.op;
import java.nio.ByteBuffer;
import java.nio.DoubleBuffer;
import java.nio.FloatBuffer;
import java.nio.IntBuffer;
import java.nio.LongBuffer;
import java.util.List;
import org.tensorflow.Graph;
import org.tensorflow.Operand;
import org.tensorflow.Shape;
import org.tensorflow.op.core.Abort;
import org.tensorflow.op.core.Abs;
import org.tensorflow.op.core.AccumulateNV2;
import org.tensorflow.op.core.AccumulatorApplyGradient;
import org.tensorflow.op.core.AccumulatorNumAccumulated;
import org.tensorflow.op.core.AccumulatorSetGlobalStep;
import org.tensorflow.op.core.AccumulatorTakeGradient;
import org.tensorflow.op.core.Acos;
import org.tensorflow.op.core.Acosh;
import org.tensorflow.op.core.Add;
import org.tensorflow.op.core.AddManySparseToTensorsMap;
import org.tensorflow.op.core.AddN;
import org.tensorflow.op.core.AddSparseToTensorsMap;
import org.tensorflow.op.core.AddV2;
import org.tensorflow.op.core.AdjustContrast;
import org.tensorflow.op.core.AdjustHue;
import org.tensorflow.op.core.AdjustSaturation;
import org.tensorflow.op.core.All;
import org.tensorflow.op.core.AllCandidateSampler;
import org.tensorflow.op.core.Angle;
import org.tensorflow.op.core.AnonymousIterator;
import org.tensorflow.op.core.Any;
import org.tensorflow.op.core.ApplyAdadelta;
import org.tensorflow.op.core.ApplyAdagrad;
import org.tensorflow.op.core.ApplyAdagradDA;
import org.tensorflow.op.core.ApplyAdam;
import org.tensorflow.op.core.ApplyAddSign;
import org.tensorflow.op.core.ApplyCenteredRMSProp;
import org.tensorflow.op.core.ApplyFtrl;
import org.tensorflow.op.core.ApplyFtrlV2;
import org.tensorflow.op.core.ApplyGradientDescent;
import org.tensorflow.op.core.ApplyMomentum;
import org.tensorflow.op.core.ApplyPowerSign;
import org.tensorflow.op.core.ApplyProximalAdagrad;
import org.tensorflow.op.core.ApplyProximalGradientDescent;
import org.tensorflow.op.core.ApplyRMSProp;
import org.tensorflow.op.core.ApproximateEqual;
import org.tensorflow.op.core.ArgMax;
import org.tensorflow.op.core.ArgMin;
import org.tensorflow.op.core.AsString;
import org.tensorflow.op.core.Asin;
import org.tensorflow.op.core.Asinh;
import org.tensorflow.op.core.Assign;
import org.tensorflow.op.core.AssignAdd;
import org.tensorflow.op.core.AssignAddVariableOp;
import org.tensorflow.op.core.AssignSub;
import org.tensorflow.op.core.AssignSubVariableOp;
import org.tensorflow.op.core.AssignVariableOp;
import org.tensorflow.op.core.Atan;
import org.tensorflow.op.core.Atan2;
import org.tensorflow.op.core.Atanh;
import org.tensorflow.op.core.AudioSpectrogram;
import org.tensorflow.op.core.AudioSummary;
import org.tensorflow.op.core.AvgPool;
import org.tensorflow.op.core.AvgPool3D;
import org.tensorflow.op.core.AvgPool3DGrad;
import org.tensorflow.op.core.Barrier;
import org.tensorflow.op.core.BarrierClose;
import org.tensorflow.op.core.BarrierIncompleteSize;
import org.tensorflow.op.core.BarrierInsertMany;
import org.tensorflow.op.core.BarrierReadySize;
import org.tensorflow.op.core.BarrierTakeMany;
import org.tensorflow.op.core.Batch;
import org.tensorflow.op.core.BatchCholesky;
import org.tensorflow.op.core.BatchCholeskyGrad;
import org.tensorflow.op.core.BatchDataset;
import org.tensorflow.op.core.BatchFFT;
import org.tensorflow.op.core.BatchFFT2D;
import org.tensorflow.op.core.BatchFFT3D;
import org.tensorflow.op.core.BatchIFFT;
import org.tensorflow.op.core.BatchIFFT2D;
import org.tensorflow.op.core.BatchIFFT3D;
import org.tensorflow.op.core.BatchMatMul;
import org.tensorflow.op.core.BatchMatrixBandPart;
import org.tensorflow.op.core.BatchMatrixDeterminant;
import org.tensorflow.op.core.BatchMatrixDiag;
import org.tensorflow.op.core.BatchMatrixDiagPart;
import org.tensorflow.op.core.BatchMatrixInverse;
import org.tensorflow.op.core.BatchMatrixSetDiag;
import org.tensorflow.op.core.BatchMatrixSolve;
import org.tensorflow.op.core.BatchMatrixSolveLs;
import org.tensorflow.op.core.BatchMatrixTriangularSolve;
import org.tensorflow.op.core.BatchNormWithGlobalNormalization;
import org.tensorflow.op.core.BatchNormWithGlobalNormalizationGrad;
import org.tensorflow.op.core.BatchSelfAdjointEig;
import org.tensorflow.op.core.BatchSelfAdjointEigV2;
import org.tensorflow.op.core.BatchSvd;
import org.tensorflow.op.core.BatchToSpace;
import org.tensorflow.op.core.BatchToSpaceND;
import org.tensorflow.op.core.BesselI0e;
import org.tensorflow.op.core.BesselI1e;
import org.tensorflow.op.core.Betainc;
import org.tensorflow.op.core.BiasAdd;
import org.tensorflow.op.core.BiasAddGrad;
import org.tensorflow.op.core.BigQueryReader;
import org.tensorflow.op.core.Bincount;
import org.tensorflow.op.core.Bitcast;
import org.tensorflow.op.core.BitwiseAnd;
import org.tensorflow.op.core.BitwiseOr;
import org.tensorflow.op.core.BitwiseXor;
import org.tensorflow.op.core.BroadcastDynamicShape;
import org.tensorflow.op.core.BroadcastTo;
import org.tensorflow.op.core.Bucketize;
import org.tensorflow.op.core.BytesProducedStatsDataset;
import org.tensorflow.op.core.CTCBeamSearchDecoder;
import org.tensorflow.op.core.CTCGreedyDecoder;
import org.tensorflow.op.core.CTCLoss;
import org.tensorflow.op.core.CacheDataset;
import org.tensorflow.op.core.Cast;
import org.tensorflow.op.core.Ceil;
import org.tensorflow.op.core.CheckNumerics;
import org.tensorflow.op.core.Cholesky;
import org.tensorflow.op.core.CholeskyGrad;
import org.tensorflow.op.core.ClipByValue;
import org.tensorflow.op.core.CompareAndBitpack;
import org.tensorflow.op.core.Complex;
import org.tensorflow.op.core.ComplexAbs;
import org.tensorflow.op.core.ComputeAccidentalHits;
import org.tensorflow.op.core.Concat;
import org.tensorflow.op.core.ConcatenateDataset;
import org.tensorflow.op.core.ConditionalAccumulator;
import org.tensorflow.op.core.Conj;
import org.tensorflow.op.core.ConjugateTranspose;
import org.tensorflow.op.core.Constant;
import org.tensorflow.op.core.ConsumeMutexLock;
import org.tensorflow.op.core.ControlTrigger;
import org.tensorflow.op.core.Conv2D;
import org.tensorflow.op.core.Conv2DBackpropFilter;
import org.tensorflow.op.core.Conv2DBackpropInput;
import org.tensorflow.op.core.Conv3D;
import org.tensorflow.op.core.Conv3DBackpropFilter;
import org.tensorflow.op.core.Conv3DBackpropFilterV2;
import org.tensorflow.op.core.Conv3DBackpropInput;
import org.tensorflow.op.core.Conv3DBackpropInputV2;
import org.tensorflow.op.core.Cos;
import org.tensorflow.op.core.Cosh;
import org.tensorflow.op.core.CountUpTo;
import org.tensorflow.op.core.CropAndResize;
import org.tensorflow.op.core.CropAndResizeGradBoxes;
import org.tensorflow.op.core.CropAndResizeGradImage;
import org.tensorflow.op.core.Cross;
import org.tensorflow.op.core.CudnnRNN;
import org.tensorflow.op.core.CudnnRNNBackprop;
import org.tensorflow.op.core.CudnnRNNCanonicalToParams;
import org.tensorflow.op.core.CudnnRNNParamsSize;
import org.tensorflow.op.core.CudnnRNNParamsToCanonical;
import org.tensorflow.op.core.Cumprod;
import org.tensorflow.op.core.Cumsum;
import org.tensorflow.op.core.DataFormatDimMap;
import org.tensorflow.op.core.DataFormatVecPermute;
import org.tensorflow.op.core.DatasetToSingleElement;
import org.tensorflow.op.core.DebugGradientIdentity;
import org.tensorflow.op.core.DebugGradientRefIdentity;
import org.tensorflow.op.core.DecodeAndCropJpeg;
import org.tensorflow.op.core.DecodeBase64;
import org.tensorflow.op.core.DecodeBmp;
import org.tensorflow.op.core.DecodeCSV;
import org.tensorflow.op.core.DecodeCompressed;
import org.tensorflow.op.core.DecodeGif;
import org.tensorflow.op.core.DecodeJSONExample;
import org.tensorflow.op.core.DecodeJpeg;
import org.tensorflow.op.core.DecodePng;
import org.tensorflow.op.core.DecodeProtoV2;
import org.tensorflow.op.core.DecodeRaw;
import org.tensorflow.op.core.DecodeWav;
import org.tensorflow.op.core.DeepCopy;
import org.tensorflow.op.core.DeleteSessionTensor;
import org.tensorflow.op.core.DenseToDenseSetOperation;
import org.tensorflow.op.core.DenseToSparseBatchDataset;
import org.tensorflow.op.core.DenseToSparseSetOperation;
import org.tensorflow.op.core.DepthToSpace;
import org.tensorflow.op.core.DepthwiseConv2dNative;
import org.tensorflow.op.core.DepthwiseConv2dNativeBackpropFilter;
import org.tensorflow.op.core.DepthwiseConv2dNativeBackpropInput;
import org.tensorflow.op.core.Dequantize;
import org.tensorflow.op.core.DeserializeIterator;
import org.tensorflow.op.core.DeserializeManySparse;
import org.tensorflow.op.core.DeserializeSparse;
import org.tensorflow.op.core.DestroyResourceOp;
import org.tensorflow.op.core.DestroyTemporaryVariable;
import org.tensorflow.op.core.Diag;
import org.tensorflow.op.core.DiagPart;
import org.tensorflow.op.core.Digamma;
import org.tensorflow.op.core.Dilation2D;
import org.tensorflow.op.core.Dilation2DBackpropFilter;
import org.tensorflow.op.core.Dilation2DBackpropInput;
import org.tensorflow.op.core.Div;
import org.tensorflow.op.core.DrawBoundingBoxes;
import org.tensorflow.op.core.DynamicPartition;
import org.tensorflow.op.core.DynamicStitch;
import org.tensorflow.op.core.EagerPyFunc;
import org.tensorflow.op.core.EditDistance;
import org.tensorflow.op.core.Elu;
import org.tensorflow.op.core.Empty;
import org.tensorflow.op.core.EmptyTensorList;
import org.tensorflow.op.core.EncodeBase64;
import org.tensorflow.op.core.EncodeJpeg;
import org.tensorflow.op.core.EncodePng;
import org.tensorflow.op.core.EncodeProto;
import org.tensorflow.op.core.EncodeWav;
import org.tensorflow.op.core.EnqueueInQueueDataset;
import org.tensorflow.op.core.Equal;
import org.tensorflow.op.core.Erf;
import org.tensorflow.op.core.Erfc;
import org.tensorflow.op.core.Exp;
import org.tensorflow.op.core.ExpandDims;
import org.tensorflow.op.core.Expm1;
import org.tensorflow.op.core.ExtractGlimpse;
import org.tensorflow.op.core.ExtractImagePatches;
import org.tensorflow.op.core.ExtractJpegShape;
import org.tensorflow.op.core.FFT;
import org.tensorflow.op.core.FFT2D;
import org.tensorflow.op.core.FFT3D;
import org.tensorflow.op.core.FIFOQueue;
import org.tensorflow.op.core.Fact;
import org.tensorflow.op.core.FakeQuantWithMinMaxArgs;
import org.tensorflow.op.core.FakeQuantWithMinMaxArgsGradient;
import org.tensorflow.op.core.FakeQuantWithMinMaxVars;
import org.tensorflow.op.core.FakeQuantWithMinMaxVarsGradient;
import org.tensorflow.op.core.FakeQuantWithMinMaxVarsPerChannel;
import org.tensorflow.op.core.FakeQuantWithMinMaxVarsPerChannelGradient;
import org.tensorflow.op.core.FeatureStatsDataset;
import org.tensorflow.op.core.Fill;
import org.tensorflow.op.core.FixedLengthRecordDataset;
import org.tensorflow.op.core.FixedLengthRecordReader;
import org.tensorflow.op.core.FixedUnigramCandidateSampler;
import org.tensorflow.op.core.Floor;
import org.tensorflow.op.core.FloorDiv;
import org.tensorflow.op.core.FloorMod;
import org.tensorflow.op.core.FractionalAvgPool;
import org.tensorflow.op.core.FractionalMaxPool;
import org.tensorflow.op.core.FusedBatchNorm;
import org.tensorflow.op.core.FusedBatchNormGrad;
import org.tensorflow.op.core.FusedBatchNormGradV2;
import org.tensorflow.op.core.FusedBatchNormV2;
import org.tensorflow.op.core.FusedPadConv2D;
import org.tensorflow.op.core.FusedResizeAndPadConv2D;
import org.tensorflow.op.core.Gather;
import org.tensorflow.op.core.GatherNd;
import org.tensorflow.op.core.GatherV2;
import org.tensorflow.op.core.GcsConfigureBlockCache;
import org.tensorflow.op.core.GcsConfigureCredentials;
import org.tensorflow.op.core.GenerateBigQueryReaderPartitions;
import org.tensorflow.op.core.GenerateVocabRemapping;
import org.tensorflow.op.core.GetSessionHandle;
import org.tensorflow.op.core.GetSessionHandleV2;
import org.tensorflow.op.core.GetSessionTensor;
import org.tensorflow.op.core.Gradients;
import org.tensorflow.op.core.Greater;
import org.tensorflow.op.core.GreaterEqual;
import org.tensorflow.op.core.GuaranteeConst;
import org.tensorflow.op.core.HSVToRGB;
import org.tensorflow.op.core.HashTable;
import org.tensorflow.op.core.HistogramFixedWidth;
import org.tensorflow.op.core.HistogramSummary;
import org.tensorflow.op.core.IFFT;
import org.tensorflow.op.core.IFFT2D;
import org.tensorflow.op.core.IFFT3D;
import org.tensorflow.op.core.IRFFT;
import org.tensorflow.op.core.IRFFT2D;
import org.tensorflow.op.core.IRFFT3D;
import org.tensorflow.op.core.Identity;
import org.tensorflow.op.core.IdentityN;
import org.tensorflow.op.core.IdentityReader;
import org.tensorflow.op.core.Igamma;
import org.tensorflow.op.core.Igammac;
import org.tensorflow.op.core.Imag;
import org.tensorflow.op.core.ImageSummary;
import org.tensorflow.op.core.ImmutableConst;
import org.tensorflow.op.core.InTopK;
import org.tensorflow.op.core.InTopKV2;
import org.tensorflow.op.core.InitializeTable;
import org.tensorflow.op.core.InitializeTableFromTextFile;
import org.tensorflow.op.core.InplaceAdd;
import org.tensorflow.op.core.InplaceSub;
import org.tensorflow.op.core.InplaceUpdate;
import org.tensorflow.op.core.Inv;
import org.tensorflow.op.core.Invert;
import org.tensorflow.op.core.InvertPermutation;
import org.tensorflow.op.core.IsFinite;
import org.tensorflow.op.core.IsInf;
import org.tensorflow.op.core.IsNan;
import org.tensorflow.op.core.IsVariableInitialized;
import org.tensorflow.op.core.Iterator;
import org.tensorflow.op.core.IteratorFromStringHandle;
import org.tensorflow.op.core.IteratorGetNext;
import org.tensorflow.op.core.IteratorGetNextSync;
import org.tensorflow.op.core.IteratorToStringHandle;
import org.tensorflow.op.core.L2Loss;
import org.tensorflow.op.core.LMDBReader;
import org.tensorflow.op.core.LRN;
import org.tensorflow.op.core.LatencyStatsDataset;
import org.tensorflow.op.core.LearnedUnigramCandidateSampler;
import org.tensorflow.op.core.LeftShift;
import org.tensorflow.op.core.Less;
import org.tensorflow.op.core.LessEqual;
import org.tensorflow.op.core.Lgamma;
import org.tensorflow.op.core.LinSpace;
import org.tensorflow.op.core.LoadAndRemapMatrix;
import org.tensorflow.op.core.Log;
import org.tensorflow.op.core.Log1p;
import org.tensorflow.op.core.LogMatrixDeterminant;
import org.tensorflow.op.core.LogSoftmax;
import org.tensorflow.op.core.LogUniformCandidateSampler;
import org.tensorflow.op.core.LogicalAnd;
import org.tensorflow.op.core.LogicalNot;
import org.tensorflow.op.core.LogicalOr;
import org.tensorflow.op.core.LookupTableExport;
import org.tensorflow.op.core.LookupTableFind;
import org.tensorflow.op.core.LookupTableImport;
import org.tensorflow.op.core.LookupTableInsert;
import org.tensorflow.op.core.LookupTableSize;
import org.tensorflow.op.core.LoopCond;
import org.tensorflow.op.core.MakeIterator;
import org.tensorflow.op.core.MapClear;
import org.tensorflow.op.core.MapIncompleteSize;
import org.tensorflow.op.core.MapPeek;
import org.tensorflow.op.core.MapSize;
import org.tensorflow.op.core.MapStage;
import org.tensorflow.op.core.MapUnstage;
import org.tensorflow.op.core.MapUnstageNoKey;
import org.tensorflow.op.core.MatMul;
import org.tensorflow.op.core.MatchingFiles;
import org.tensorflow.op.core.MatrixBandPart;
import org.tensorflow.op.core.MatrixDeterminant;
import org.tensorflow.op.core.MatrixDiag;
import org.tensorflow.op.core.MatrixDiagPart;
import org.tensorflow.op.core.MatrixExponential;
import org.tensorflow.op.core.MatrixInverse;
import org.tensorflow.op.core.MatrixSetDiag;
import org.tensorflow.op.core.MatrixSolve;
import org.tensorflow.op.core.MatrixSolveLs;
import org.tensorflow.op.core.MatrixTriangularSolve;
import org.tensorflow.op.core.Max;
import org.tensorflow.op.core.MaxPool;
import org.tensorflow.op.core.MaxPool3D;
import org.tensorflow.op.core.MaxPool3DGrad;
import org.tensorflow.op.core.MaxPool3DGradGrad;
import org.tensorflow.op.core.MaxPoolGradGrad;
import org.tensorflow.op.core.MaxPoolGradGradV2;
import org.tensorflow.op.core.MaxPoolGradGradWithArgmax;
import org.tensorflow.op.core.MaxPoolGradV2;
import org.tensorflow.op.core.MaxPoolV2;
import org.tensorflow.op.core.MaxPoolWithArgmax;
import org.tensorflow.op.core.Maximum;
import org.tensorflow.op.core.Mean;
import org.tensorflow.op.core.Merge;
import org.tensorflow.op.core.MergeSummary;
import org.tensorflow.op.core.MergeV2Checkpoints;
import org.tensorflow.op.core.Mfcc;
import org.tensorflow.op.core.Min;
import org.tensorflow.op.core.Minimum;
import org.tensorflow.op.core.MirrorPad;
import org.tensorflow.op.core.Mod;
import org.tensorflow.op.core.Mul;
import org.tensorflow.op.core.Multinomial;
import org.tensorflow.op.core.Multiply;
import org.tensorflow.op.core.MutableDenseHashTable;
import org.tensorflow.op.core.MutableHashTable;
import org.tensorflow.op.core.MutableHashTableOfTensors;
import org.tensorflow.op.core.MutexLock;
import org.tensorflow.op.core.MutexV2;
import org.tensorflow.op.core.Neg;
import org.tensorflow.op.core.NegTrain;
import org.tensorflow.op.core.Negate;
import org.tensorflow.op.core.NextIteration;
import org.tensorflow.op.core.NoOp;
import org.tensorflow.op.core.NonMaxSuppression;
import org.tensorflow.op.core.NonMaxSuppressionV2;
import org.tensorflow.op.core.NonMaxSuppressionV3;
import org.tensorflow.op.core.NonMaxSuppressionWithOverlaps;
import org.tensorflow.op.core.NotEqual;
import org.tensorflow.op.core.NthElement;
import org.tensorflow.op.core.OneHot;
import org.tensorflow.op.core.OnesLike;
import org.tensorflow.op.core.OrderedMapClear;
import org.tensorflow.op.core.OrderedMapIncompleteSize;
import org.tensorflow.op.core.OrderedMapPeek;
import org.tensorflow.op.core.OrderedMapSize;
import org.tensorflow.op.core.OrderedMapStage;
import org.tensorflow.op.core.OrderedMapUnstage;
import org.tensorflow.op.core.OrderedMapUnstageNoKey;
import org.tensorflow.op.core.Pad;
import org.tensorflow.op.core.PadV2;
import org.tensorflow.op.core.PaddedBatchDataset;
import org.tensorflow.op.core.PaddingFIFOQueue;
import org.tensorflow.op.core.ParallelConcat;
import org.tensorflow.op.core.ParallelDynamicStitch;
import org.tensorflow.op.core.ParameterizedTruncatedNormal;
import org.tensorflow.op.core.ParseExample;
import org.tensorflow.op.core.ParseSingleExample;
import org.tensorflow.op.core.ParseSingleSequenceExample;
import org.tensorflow.op.core.ParseTensor;
import org.tensorflow.op.core.Placeholder;
import org.tensorflow.op.core.PlaceholderV2;
import org.tensorflow.op.core.PlaceholderWithDefault;
import org.tensorflow.op.core.Polygamma;
import org.tensorflow.op.core.PopulationCount;
import org.tensorflow.op.core.Pow;
import org.tensorflow.op.core.PrefetchDataset;
import org.tensorflow.op.core.PrependFromQueueAndPaddedBatchDataset;
import org.tensorflow.op.core.PreventGradient;
import org.tensorflow.op.core.Print;
import org.tensorflow.op.core.PriorityQueue;
import org.tensorflow.op.core.Prod;
import org.tensorflow.op.core.Qr;
import org.tensorflow.op.core.QuantizeAndDequantize;
import org.tensorflow.op.core.QuantizeAndDequantizeV2;
import org.tensorflow.op.core.QuantizeAndDequantizeV3;
import org.tensorflow.op.core.QuantizeDownAndShrinkRange;
import org.tensorflow.op.core.QuantizeV2;
import org.tensorflow.op.core.QuantizedAdd;
import org.tensorflow.op.core.QuantizedAvgPool;
import org.tensorflow.op.core.QuantizedBatchNormWithGlobalNormalization;
import org.tensorflow.op.core.QuantizedBiasAdd;
import org.tensorflow.op.core.QuantizedConcat;
import org.tensorflow.op.core.QuantizedConv2D;
import org.tensorflow.op.core.QuantizedInstanceNorm;
import org.tensorflow.op.core.QuantizedMatMul;
import org.tensorflow.op.core.QuantizedMaxPool;
import org.tensorflow.op.core.QuantizedMul;
import org.tensorflow.op.core.QuantizedRelu;
import org.tensorflow.op.core.QuantizedRelu6;
import org.tensorflow.op.core.QuantizedReluX;
import org.tensorflow.op.core.QuantizedReshape;
import org.tensorflow.op.core.QuantizedResizeBilinear;
import org.tensorflow.op.core.QueueClose;
import org.tensorflow.op.core.QueueDequeue;
import org.tensorflow.op.core.QueueDequeueMany;
import org.tensorflow.op.core.QueueDequeueUpTo;
import org.tensorflow.op.core.QueueEnqueue;
import org.tensorflow.op.core.QueueEnqueueMany;
import org.tensorflow.op.core.QueueIsClosed;
import org.tensorflow.op.core.QueueIsClosedV2;
import org.tensorflow.op.core.QueueSize;
import org.tensorflow.op.core.RFFT;
import org.tensorflow.op.core.RFFT2D;
import org.tensorflow.op.core.RFFT3D;
import org.tensorflow.op.core.RGBToHSV;
import org.tensorflow.op.core.RandomCrop;
import org.tensorflow.op.core.RandomDataset;
import org.tensorflow.op.core.RandomGamma;
import org.tensorflow.op.core.RandomNormal;
import org.tensorflow.op.core.RandomPoisson;
import org.tensorflow.op.core.RandomPoissonV2;
import org.tensorflow.op.core.RandomShuffle;
import org.tensorflow.op.core.RandomShuffleQueue;
import org.tensorflow.op.core.RandomUniform;
import org.tensorflow.op.core.RandomUniformInt;
import org.tensorflow.op.core.Range;
import org.tensorflow.op.core.RangeDataset;
import org.tensorflow.op.core.Rank;
import org.tensorflow.op.core.ReadFile;
import org.tensorflow.op.core.ReadVariableOp;
import org.tensorflow.op.core.ReaderNumRecordsProduced;
import org.tensorflow.op.core.ReaderNumWorkUnitsCompleted;
import org.tensorflow.op.core.ReaderRead;
import org.tensorflow.op.core.ReaderReadUpTo;
import org.tensorflow.op.core.ReaderReset;
import org.tensorflow.op.core.ReaderRestoreState;
import org.tensorflow.op.core.ReaderSerializeState;
import org.tensorflow.op.core.Real;
import org.tensorflow.op.core.RealDiv;
import org.tensorflow.op.core.Reciprocal;
import org.tensorflow.op.core.RecordInput;
import org.tensorflow.op.core.ReduceAll;
import org.tensorflow.op.core.ReduceAny;
import org.tensorflow.op.core.ReduceJoin;
import org.tensorflow.op.core.ReduceMax;
import org.tensorflow.op.core.ReduceMean;
import org.tensorflow.op.core.ReduceMin;
import org.tensorflow.op.core.ReduceProd;
import org.tensorflow.op.core.ReduceSum;
import org.tensorflow.op.core.RefNextIteration;
import org.tensorflow.op.core.RefSelect;
import org.tensorflow.op.core.RefSwitch;
import org.tensorflow.op.core.RegexFullMatch;
import org.tensorflow.op.core.RegexReplace;
import org.tensorflow.op.core.Relu;
import org.tensorflow.op.core.Relu6;
import org.tensorflow.op.core.RemoteFusedGraphExecute;
import org.tensorflow.op.core.RepeatDataset;
import org.tensorflow.op.core.RequantizationRange;
import org.tensorflow.op.core.Requantize;
import org.tensorflow.op.core.Reshape;
import org.tensorflow.op.core.ResizeArea;
import org.tensorflow.op.core.ResizeBicubic;
import org.tensorflow.op.core.ResizeBilinear;
import org.tensorflow.op.core.ResizeNearestNeighbor;
import org.tensorflow.op.core.ResourceApplyAdadelta;
import org.tensorflow.op.core.ResourceApplyAdagrad;
import org.tensorflow.op.core.ResourceApplyAdagradDA;
import org.tensorflow.op.core.ResourceApplyAdam;
import org.tensorflow.op.core.ResourceApplyAddSign;
import org.tensorflow.op.core.ResourceApplyCenteredRMSProp;
import org.tensorflow.op.core.ResourceApplyFtrl;
import org.tensorflow.op.core.ResourceApplyFtrlV2;
import org.tensorflow.op.core.ResourceApplyGradientDescent;
import org.tensorflow.op.core.ResourceApplyMomentum;
import org.tensorflow.op.core.ResourceApplyPowerSign;
import org.tensorflow.op.core.ResourceApplyProximalAdagrad;
import org.tensorflow.op.core.ResourceApplyProximalGradientDescent;
import org.tensorflow.op.core.ResourceApplyRMSProp;
import org.tensorflow.op.core.ResourceCountUpTo;
import org.tensorflow.op.core.ResourceGather;
import org.tensorflow.op.core.ResourceScatterAdd;
import org.tensorflow.op.core.ResourceScatterDiv;
import org.tensorflow.op.core.ResourceScatterMax;
import org.tensorflow.op.core.ResourceScatterMin;
import org.tensorflow.op.core.ResourceScatterMul;
import org.tensorflow.op.core.ResourceScatterNdAdd;
import org.tensorflow.op.core.ResourceScatterNdUpdate;
import org.tensorflow.op.core.ResourceScatterSub;
import org.tensorflow.op.core.ResourceScatterUpdate;
import org.tensorflow.op.core.ResourceSparseApplyAdadelta;
import org.tensorflow.op.core.ResourceSparseApplyAdagrad;
import org.tensorflow.op.core.ResourceSparseApplyAdagradDA;
import org.tensorflow.op.core.ResourceSparseApplyCenteredRMSProp;
import org.tensorflow.op.core.ResourceSparseApplyFtrl;
import org.tensorflow.op.core.ResourceSparseApplyFtrlV2;
import org.tensorflow.op.core.ResourceSparseApplyMomentum;
import org.tensorflow.op.core.ResourceSparseApplyProximalAdagrad;
import org.tensorflow.op.core.ResourceSparseApplyProximalGradientDescent;
import org.tensorflow.op.core.ResourceSparseApplyRMSProp;
import org.tensorflow.op.core.ResourceStridedSliceAssign;
import org.tensorflow.op.core.Restore;
import org.tensorflow.op.core.RestoreSlice;
import org.tensorflow.op.core.RestoreV2;
import org.tensorflow.op.core.Reverse;
import org.tensorflow.op.core.ReverseSequence;
import org.tensorflow.op.core.RightShift;
import org.tensorflow.op.core.Rint;
import org.tensorflow.op.core.Roll;
import org.tensorflow.op.core.Round;
import org.tensorflow.op.core.Rpc;
import org.tensorflow.op.core.Rsqrt;
import org.tensorflow.op.core.SampleDistortedBoundingBox;
import org.tensorflow.op.core.SampleDistortedBoundingBoxV2;
import org.tensorflow.op.core.Save;
import org.tensorflow.op.core.SaveSlices;
import org.tensorflow.op.core.SaveV2;
import org.tensorflow.op.core.ScalarSummary;
import org.tensorflow.op.core.ScatterAdd;
import org.tensorflow.op.core.ScatterDiv;
import org.tensorflow.op.core.ScatterMax;
import org.tensorflow.op.core.ScatterMin;
import org.tensorflow.op.core.ScatterMul;
import org.tensorflow.op.core.ScatterNd;
import org.tensorflow.op.core.ScatterNdAdd;
import org.tensorflow.op.core.ScatterNdNonAliasingAdd;
import org.tensorflow.op.core.ScatterNdSub;
import org.tensorflow.op.core.ScatterNdUpdate;
import org.tensorflow.op.core.ScatterSub;
import org.tensorflow.op.core.ScatterUpdate;
import org.tensorflow.op.core.SdcaFprint;
import org.tensorflow.op.core.SdcaOptimizer;
import org.tensorflow.op.core.SdcaShrinkL1;
import org.tensorflow.op.core.SegmentMax;
import org.tensorflow.op.core.SegmentMean;
import org.tensorflow.op.core.SegmentMin;
import org.tensorflow.op.core.SegmentProd;
import org.tensorflow.op.core.SegmentSum;
import org.tensorflow.op.core.SelfAdjointEig;
import org.tensorflow.op.core.Selu;
import org.tensorflow.op.core.SerializeIterator;
import org.tensorflow.op.core.SerializeManySparse;
import org.tensorflow.op.core.SerializeSparse;
import org.tensorflow.op.core.SerializeTensor;
import org.tensorflow.op.core.SetDiff1D;
import org.tensorflow.op.core.SetSize;
import org.tensorflow.op.core.SetStatsAggregatorDataset;
import org.tensorflow.op.core.ShapeN;
import org.tensorflow.op.core.ShardedFilename;
import org.tensorflow.op.core.ShardedFilespec;
import org.tensorflow.op.core.ShuffleAndRepeatDataset;
import org.tensorflow.op.core.ShuffleDataset;
import org.tensorflow.op.core.Sigmoid;
import org.tensorflow.op.core.Sign;
import org.tensorflow.op.core.Sin;
import org.tensorflow.op.core.Sinh;
import org.tensorflow.op.core.Size;
import org.tensorflow.op.core.SkipDataset;
import org.tensorflow.op.core.Skipgram;
import org.tensorflow.op.core.Slice;
import org.tensorflow.op.core.SlideDataset;
import org.tensorflow.op.core.Snapshot;
import org.tensorflow.op.core.Softmax;
import org.tensorflow.op.core.SoftmaxCrossEntropyWithLogits;
import org.tensorflow.op.core.Softplus;
import org.tensorflow.op.core.Softsign;
import org.tensorflow.op.core.SpaceToBatch;
import org.tensorflow.op.core.SpaceToBatchND;
import org.tensorflow.op.core.SpaceToDepth;
import org.tensorflow.op.core.SparseAccumulatorApplyGradient;
import org.tensorflow.op.core.SparseAccumulatorTakeGradient;
import org.tensorflow.op.core.SparseAdd;
import org.tensorflow.op.core.SparseAddGrad;
import org.tensorflow.op.core.SparseApplyAdadelta;
import org.tensorflow.op.core.SparseApplyAdagrad;
import org.tensorflow.op.core.SparseApplyAdagradDA;
import org.tensorflow.op.core.SparseApplyCenteredRMSProp;
import org.tensorflow.op.core.SparseApplyFtrl;
import org.tensorflow.op.core.SparseApplyFtrlV2;
import org.tensorflow.op.core.SparseApplyMomentum;
import org.tensorflow.op.core.SparseApplyProximalAdagrad;
import org.tensorflow.op.core.SparseApplyProximalGradientDescent;
import org.tensorflow.op.core.SparseApplyRMSProp;
import org.tensorflow.op.core.SparseConcat;
import org.tensorflow.op.core.SparseConditionalAccumulator;
import org.tensorflow.op.core.SparseCross;
import org.tensorflow.op.core.SparseDenseCwiseAdd;
import org.tensorflow.op.core.SparseDenseCwiseDiv;
import org.tensorflow.op.core.SparseDenseCwiseMul;
import org.tensorflow.op.core.SparseFillEmptyRows;
import org.tensorflow.op.core.SparseFillEmptyRowsGrad;
import org.tensorflow.op.core.SparseMatMul;
import org.tensorflow.op.core.SparseReduceMax;
import org.tensorflow.op.core.SparseReduceMaxSparse;
import org.tensorflow.op.core.SparseReduceSum;
import org.tensorflow.op.core.SparseReduceSumSparse;
import org.tensorflow.op.core.SparseReorder;
import org.tensorflow.op.core.SparseReshape;
import org.tensorflow.op.core.SparseSegmentMean;
import org.tensorflow.op.core.SparseSegmentMeanGrad;
import org.tensorflow.op.core.SparseSegmentMeanWithNumSegments;
import org.tensorflow.op.core.SparseSegmentSqrtN;
import org.tensorflow.op.core.SparseSegmentSqrtNGrad;
import org.tensorflow.op.core.SparseSegmentSqrtNWithNumSegments;
import org.tensorflow.op.core.SparseSegmentSum;
import org.tensorflow.op.core.SparseSegmentSumWithNumSegments;
import org.tensorflow.op.core.SparseSlice;
import org.tensorflow.op.core.SparseSliceGrad;
import org.tensorflow.op.core.SparseSoftmax;
import org.tensorflow.op.core.SparseSoftmaxCrossEntropyWithLogits;
import org.tensorflow.op.core.SparseSparseMaximum;
import org.tensorflow.op.core.SparseSparseMinimum;
import org.tensorflow.op.core.SparseSplit;
import org.tensorflow.op.core.SparseTensorDenseAdd;
import org.tensorflow.op.core.SparseTensorDenseMatMul;
import org.tensorflow.op.core.SparseTensorSliceDataset;
import org.tensorflow.op.core.SparseToDense;
import org.tensorflow.op.core.SparseToSparseSetOperation;
import org.tensorflow.op.core.Split;
import org.tensorflow.op.core.SplitV;
import org.tensorflow.op.core.SqlDataset;
import org.tensorflow.op.core.Sqrt;
import org.tensorflow.op.core.Square;
import org.tensorflow.op.core.SquaredDifference;
import org.tensorflow.op.core.Squeeze;
import org.tensorflow.op.core.Stack;
import org.tensorflow.op.core.Stage;
import org.tensorflow.op.core.StageClear;
import org.tensorflow.op.core.StagePeek;
import org.tensorflow.op.core.StageSize;
import org.tensorflow.op.core.StatelessMultinomial;
import org.tensorflow.op.core.StatelessRandomNormal;
import org.tensorflow.op.core.StatelessRandomUniform;
import org.tensorflow.op.core.StatelessTruncatedNormal;
import org.tensorflow.op.core.StatsAggregatorHandle;
import org.tensorflow.op.core.StatsAggregatorSummary;
import org.tensorflow.op.core.StopGradient;
import org.tensorflow.op.core.StridedSlice;
import org.tensorflow.op.core.StridedSliceAssign;
import org.tensorflow.op.core.StridedSliceGrad;
import org.tensorflow.op.core.StringJoin;
import org.tensorflow.op.core.StringSplit;
import org.tensorflow.op.core.StringSplitV2;
import org.tensorflow.op.core.StringStrip;
import org.tensorflow.op.core.StringToHashBucket;
import org.tensorflow.op.core.StringToHashBucketFast;
import org.tensorflow.op.core.StringToHashBucketStrong;
import org.tensorflow.op.core.StringToNumber;
import org.tensorflow.op.core.Sub;
import org.tensorflow.op.core.Substr;
import org.tensorflow.op.core.Subtract;
import org.tensorflow.op.core.Sum;
import org.tensorflow.op.core.Svd;
import org.tensorflow.op.core.TFRecordDataset;
import org.tensorflow.op.core.TFRecordReader;
import org.tensorflow.op.core.TakeDataset;
import org.tensorflow.op.core.TakeManySparseFromTensorsMap;
import org.tensorflow.op.core.Tan;
import org.tensorflow.op.core.Tanh;
import org.tensorflow.op.core.TemporaryVariable;
import org.tensorflow.op.core.TensorArray;
import org.tensorflow.op.core.TensorArrayClose;
import org.tensorflow.op.core.TensorArrayConcat;
import org.tensorflow.op.core.TensorArrayGather;
import org.tensorflow.op.core.TensorArrayGrad;
import org.tensorflow.op.core.TensorArrayGradWithShape;
import org.tensorflow.op.core.TensorArrayPack;
import org.tensorflow.op.core.TensorArrayRead;
import org.tensorflow.op.core.TensorArrayScatter;
import org.tensorflow.op.core.TensorArraySize;
import org.tensorflow.op.core.TensorArraySplit;
import org.tensorflow.op.core.TensorArrayUnpack;
import org.tensorflow.op.core.TensorArrayWrite;
import org.tensorflow.op.core.TensorDataset;
import org.tensorflow.op.core.TensorListConcatLists;
import org.tensorflow.op.core.TensorListElementShape;
import org.tensorflow.op.core.TensorListFromTensor;
import org.tensorflow.op.core.TensorListGetItem;
import org.tensorflow.op.core.TensorListLength;
import org.tensorflow.op.core.TensorListPopBack;
import org.tensorflow.op.core.TensorListPushBack;
import org.tensorflow.op.core.TensorListPushBackBatch;
import org.tensorflow.op.core.TensorListReserve;
import org.tensorflow.op.core.TensorListSetItem;
import org.tensorflow.op.core.TensorListStack;
import org.tensorflow.op.core.TensorSliceDataset;
import org.tensorflow.op.core.TensorSummary;
import org.tensorflow.op.core.TensorSummaryV2;
import org.tensorflow.op.core.TextLineDataset;
import org.tensorflow.op.core.TextLineReader;
import org.tensorflow.op.core.Tile;
import org.tensorflow.op.core.TileGrad;
import org.tensorflow.op.core.Timestamp;
import org.tensorflow.op.core.TopK;
import org.tensorflow.op.core.Transpose;
import org.tensorflow.op.core.TruncateDiv;
import org.tensorflow.op.core.TruncateMod;
import org.tensorflow.op.core.TruncatedNormal;
import org.tensorflow.op.core.TryRpc;
import org.tensorflow.op.core.Unbatch;
import org.tensorflow.op.core.UnbatchDataset;
import org.tensorflow.op.core.UnbatchGrad;
import org.tensorflow.op.core.UniformCandidateSampler;
import org.tensorflow.op.core.Unique;
import org.tensorflow.op.core.UniqueV2;
import org.tensorflow.op.core.UniqueWithCounts;
import org.tensorflow.op.core.UniqueWithCountsV2;
import org.tensorflow.op.core.UnravelIndex;
import org.tensorflow.op.core.UnsortedSegmentMax;
import org.tensorflow.op.core.UnsortedSegmentMin;
import org.tensorflow.op.core.UnsortedSegmentProd;
import org.tensorflow.op.core.UnsortedSegmentSum;
import org.tensorflow.op.core.Unstack;
import org.tensorflow.op.core.Unstage;
import org.tensorflow.op.core.VarHandleOp;
import org.tensorflow.op.core.VarIsInitializedOp;
import org.tensorflow.op.core.Variable;
import org.tensorflow.op.core.VariableShape;
import org.tensorflow.op.core.Where;
import org.tensorflow.op.core.Where3;
import org.tensorflow.op.core.WholeFileReader;
import org.tensorflow.op.core.WriteFile;
import org.tensorflow.op.core.ZerosLike;
import org.tensorflow.op.core.Zeta;
import org.tensorflow.op.core.ZipDataset;
import org.tensorflow.types.UInt8;
/**
* An API for building a {@link Graph} with operation wrappers
*
* Any operation wrapper found in the classpath properly annotated as an{@link org.tensorflow.op.annotation.Operator @Operator} is exposed
* by this API or one of its subgroup.
*
Example usage:
*
{@code
* try (Graph g = new Graph()) {
* Ops ops = new Ops(g);
* // Operations are typed classes with convenience
* // builders in Ops.
* Constant three = ops.constant(3);
* // Single-result operations implement the Operand
* // interface, so this works too.
* Operand four = ops.constant(4);
* // Most builders are found within a group, and accept
* // Operand types as operands
* Operand nine = ops.math().add(four, ops.constant(5));
* // Multi-result operations however offer methods to
* // select a particular result for use.
* Operand result =
* ops.math().add(ops.array().unique(s, a).y(), b);
* // Optional attributes
* ops.math().matMul(a, b, MatMul.transposeA(true));
* // Naming operators
* ops.withName(“foo”).constant(5); // name “foo”
* // Names can exist in a hierarchy
* Ops sub = ops.withSubScope(“sub”);
* sub.withName(“bar”).constant(4); // “sub/bar”
* }
* }
*/
public final class Ops {
private final Scope scope;
private Ops(Scope scope) {
this.scope = scope;
}
/**
* Adds an {@link QueueSize} operation to the graph
*
* @param handle The handle to a queue.
* @return a new instance of QueueSize
* @see {@link org.tensorflow.op.core.QueueSize}
*/
public QueueSize queueSize(Operand> handle) {
return QueueSize.create(scope, handle);
}
/**
* Adds an {@link Tile} operation to the graph
*
* @param input 1-D or higher.
* @param multiples 1-D. Length must be the same as the number of dimensions in `input`
* @return a new instance of Tile
* @see {@link org.tensorflow.op.core.Tile}
*/
public Tile tile(Operand input, Operand multiples) {
return Tile.create(scope, input, multiples);
}
/**
* Adds an {@link SparseTensorDenseMatMul} operation to the graph
*
* @param aIndices 2-D. The `indices` of the `SparseTensor`, size `[nnz, 2]` Matrix.
* @param aValues 1-D. The `values` of the `SparseTensor`, size `[nnz]` Vector.
* @param aShape 1-D. The `shape` of the `SparseTensor`, size `[2]` Vector.
* @param b 2-D. A dense Matrix.
* @param options carries optional attributes values
* @return a new instance of SparseTensorDenseMatMul
* @see {@link org.tensorflow.op.core.SparseTensorDenseMatMul}
*/
public SparseTensorDenseMatMul sparseTensorDenseMatMul(Operand aIndices,
Operand aValues, Operand aShape, Operand b,
SparseTensorDenseMatMul.Options... options) {
return SparseTensorDenseMatMul.create(scope, aIndices, aValues, aShape, b, options);
}
/**
* Adds an {@link BatchMatrixDiag} operation to the graph
*
* @param diagonal
* @return a new instance of BatchMatrixDiag
* @see {@link org.tensorflow.op.core.BatchMatrixDiag}
*/
public BatchMatrixDiag batchMatrixDiag(Operand diagonal) {
return BatchMatrixDiag.create(scope, diagonal);
}
/**
* Adds an {@link EncodeProto} operation to the graph
*
* @param sizes Tensor of int32 with shape `[batch_shape, len(field_names)]`.
* @param values List of tensors containing values for the corresponding field.
* @param fieldNames List of strings containing proto field names.
* @param messageType Name of the proto message type to decode.
* @param options carries optional attributes values
* @return a new instance of EncodeProto
* @see {@link org.tensorflow.op.core.EncodeProto}
*/
public EncodeProto encodeProto(Operand sizes, Iterable> values,
List fieldNames, String messageType, EncodeProto.Options... options) {
return EncodeProto.create(scope, sizes, values, fieldNames, messageType, options);
}
/**
* Adds an {@link Conv3DBackpropInputV2} operation to the graph
*
* @param inputSizes An integer vector representing the tensor shape of `input`,
* @param filter Shape `[depth, rows, cols, in_channels, out_channels]`.
* @param outBackprop Backprop signal of shape `[batch, out_depth, out_rows, out_cols,
* @param strides 1-D tensor of length 5. The stride of the sliding window for each
* @param padding The type of padding algorithm to use.
* @param options carries optional attributes values
* @return a new instance of Conv3DBackpropInputV2
* @see {@link org.tensorflow.op.core.Conv3DBackpropInputV2}
*/
public Conv3DBackpropInputV2 conv3DBackpropInputV2(Operand inputSizes,
Operand filter, Operand outBackprop, List strides, String padding,
Conv3DBackpropInputV2.Options... options) {
return Conv3DBackpropInputV2.create(scope, inputSizes, filter, outBackprop, strides, padding, options);
}
/**
* Adds an {@link IteratorGetNext} operation to the graph
*
* @param iterator
* @param outputTypes
* @param outputShapes
* @return a new instance of IteratorGetNext
* @see {@link org.tensorflow.op.core.IteratorGetNext}
*/
public IteratorGetNext iteratorGetNext(Operand> iterator, List> outputTypes,
List outputShapes) {
return IteratorGetNext.create(scope, iterator, outputTypes, outputShapes);
}
/**
* Adds an {@link SparseSegmentMean} operation to the graph
*
* @param data
* @param indices A 1-D tensor. Has same rank as `segment_ids`.
* @param segmentIds A 1-D tensor. Values should be sorted and can be repeated.
* @return a new instance of SparseSegmentMean
* @see {@link org.tensorflow.op.core.SparseSegmentMean}
*/
public SparseSegmentMean sparseSegmentMean(Operand data,
Operand indices, Operand segmentIds) {
return SparseSegmentMean.create(scope, data, indices, segmentIds);
}
/**
* Adds an {@link LMDBReader} operation to the graph
*
* @param options carries optional attributes values
* @return a new instance of LMDBReader
* @see {@link org.tensorflow.op.core.LMDBReader}
*/
public LMDBReader lMDBReader(LMDBReader.Options... options) {
return LMDBReader.create(scope, options);
}
/**
* Adds an {@link ArgMin} operation to the graph
*
* @param input
* @param dimension int32 or int64, must be in the range `[-rank(input), rank(input))`.
* @param outputType
* @return a new instance of ArgMin
* @see {@link org.tensorflow.op.core.ArgMin}
*/
public ArgMin argMin(Operand input,
Operand dimension, Class outputType) {
return ArgMin.create(scope, input, dimension, outputType);
}
/**
* Adds an {@link ApplyFtrlV2} operation to the graph
*
* @param var Should be from a Variable().
* @param accum Should be from a Variable().
* @param linear Should be from a Variable().
* @param grad The gradient.
* @param lr Scaling factor. Must be a scalar.
* @param l1 L1 regulariation. Must be a scalar.
* @param l2 L2 shrinkage regulariation. Must be a scalar.
* @param l2Shrinkage
* @param lrPower Scaling factor. Must be a scalar.
* @param options carries optional attributes values
* @return a new instance of ApplyFtrlV2
* @see {@link org.tensorflow.op.core.ApplyFtrlV2}
*/
public ApplyFtrlV2 applyFtrlV2(Operand var, Operand accum, Operand linear,
Operand grad, Operand lr, Operand l1, Operand l2, Operand l2Shrinkage,
Operand lrPower, ApplyFtrlV2.Options... options) {
return ApplyFtrlV2.create(scope, var, accum, linear, grad, lr, l1, l2, l2Shrinkage, lrPower, options);
}
/**
* Adds an {@link IRFFT3D} operation to the graph
*
* @param input A complex64 tensor.
* @param fftLength An int32 tensor of shape [3]. The FFT length for each dimension.
* @return a new instance of IRFFT3D
* @see {@link org.tensorflow.op.core.IRFFT3D}
*/
public IRFFT3D iRFFT3D(Operand> input, Operand fftLength) {
return IRFFT3D.create(scope, input, fftLength);
}
/**
* Adds an {@link TensorListGetItem} operation to the graph
*
* @param inputHandle
* @param index
* @param elementDtype
* @return a new instance of TensorListGetItem
* @see {@link org.tensorflow.op.core.TensorListGetItem}
*/
public TensorListGetItem tensorListGetItem(Operand> inputHandle, Operand index,
Class elementDtype) {
return TensorListGetItem.create(scope, inputHandle, index, elementDtype);
}
/**
* Adds an {@link AvgPool} operation to the graph
*
* @param value 4-D with shape `[batch, height, width, channels]`.
* @param ksize The size of the sliding window for each dimension of `value`.
* @param strides The stride of the sliding window for each dimension of `value`.
* @param padding The type of padding algorithm to use.
* @param options carries optional attributes values
* @return a new instance of AvgPool
* @see {@link org.tensorflow.op.core.AvgPool}
*/
public AvgPool avgPool(Operand value, List ksize,
List strides, String padding, AvgPool.Options... options) {
return AvgPool.create(scope, value, ksize, strides, padding, options);
}
/**
* Adds an {@link QueueClose} operation to the graph
*
* @param handle The handle to a queue.
* @param options carries optional attributes values
* @return a new instance of QueueClose
* @see {@link org.tensorflow.op.core.QueueClose}
*/
public QueueClose queueClose(Operand> handle, QueueClose.Options... options) {
return QueueClose.create(scope, handle, options);
}
/**
* Adds an {@link SquaredDifference} operation to the graph
*
* @param x
* @param y
* @return a new instance of SquaredDifference
* @see {@link org.tensorflow.op.core.SquaredDifference}
*/
public SquaredDifference squaredDifference(Operand x, Operand y) {
return SquaredDifference.create(scope, x, y);
}
/**
* Adds an {@link SparseTensorSliceDataset} operation to the graph
*
* @param indices
* @param values
* @param denseShape
* @return a new instance of SparseTensorSliceDataset
* @see {@link org.tensorflow.op.core.SparseTensorSliceDataset}
*/
public SparseTensorSliceDataset sparseTensorSliceDataset(Operand indices,
Operand values, Operand denseShape) {
return SparseTensorSliceDataset.create(scope, indices, values, denseShape);
}
/**
* Adds an {@link Minimum} operation to the graph
*
* @param x
* @param y
* @return a new instance of Minimum
* @see {@link org.tensorflow.op.core.Minimum}
*/
public Minimum minimum(Operand x, Operand y) {
return Minimum.create(scope, x, y);
}
/**
* Adds an {@link Barrier} operation to the graph
*
* @param componentTypes The type of each component in a value.
* @param options carries optional attributes values
* @return a new instance of Barrier
* @see {@link org.tensorflow.op.core.Barrier}
*/
public Barrier barrier(List> componentTypes, Barrier.Options... options) {
return Barrier.create(scope, componentTypes, options);
}
/**
* Adds an {@link ApplyProximalAdagrad} operation to the graph
*
* @param var Should be from a Variable().
* @param accum Should be from a Variable().
* @param lr Scaling factor. Must be a scalar.
* @param l1 L1 regularization. Must be a scalar.
* @param l2 L2 regularization. Must be a scalar.
* @param grad The gradient.
* @param options carries optional attributes values
* @return a new instance of ApplyProximalAdagrad
* @see {@link org.tensorflow.op.core.ApplyProximalAdagrad}
*/
public ApplyProximalAdagrad applyProximalAdagrad(Operand var, Operand accum,
Operand lr, Operand l1, Operand l2, Operand grad,
ApplyProximalAdagrad.Options... options) {
return ApplyProximalAdagrad.create(scope, var, accum, lr, l1, l2, grad, options);
}
/**
* Adds an {@link DiagPart} operation to the graph
*
* @param input Rank k tensor where k is even and not zero.
* @return a new instance of DiagPart
* @see {@link org.tensorflow.op.core.DiagPart}
*/
public DiagPart diagPart(Operand input) {
return DiagPart.create(scope, input);
}
/**
* Adds an {@link ParameterizedTruncatedNormal} operation to the graph
*
* @param shape The shape of the output tensor. Batches are indexed by the 0th dimension.
* @param means The mean parameter of each batch.
* @param stdevs The standard deviation parameter of each batch. Must be greater than 0.
* @param minvals The minimum cutoff. May be -infinity.
* @param maxvals The maximum cutoff. May be +infinity, and must be more than the minval
* @param options carries optional attributes values
* @return a new instance of ParameterizedTruncatedNormal
* @see {@link org.tensorflow.op.core.ParameterizedTruncatedNormal}
*/
public ParameterizedTruncatedNormal parameterizedTruncatedNormal(Operand shape,
Operand means, Operand stdevs, Operand minvals, Operand maxvals,
ParameterizedTruncatedNormal.Options... options) {
return ParameterizedTruncatedNormal.create(scope, shape, means, stdevs, minvals, maxvals, options);
}
/**
* Adds an {@link Dilation2DBackpropFilter} operation to the graph
*
* @param input 4-D with shape `[batch, in_height, in_width, depth]`.
* @param filter 3-D with shape `[filter_height, filter_width, depth]`.
* @param outBackprop 4-D with shape `[batch, out_height, out_width, depth]`.
* @param strides 1-D of length 4. The stride of the sliding window for each dimension of
* @param rates 1-D of length 4. The input stride for atrous morphological dilation.
* @param padding The type of padding algorithm to use.
* @return a new instance of Dilation2DBackpropFilter
* @see {@link org.tensorflow.op.core.Dilation2DBackpropFilter}
*/
public Dilation2DBackpropFilter dilation2DBackpropFilter(Operand input,
Operand filter, Operand outBackprop, List strides, List rates,
String padding) {
return Dilation2DBackpropFilter.create(scope, input, filter, outBackprop, strides, rates, padding);
}
/**
* Adds an {@link StringStrip} operation to the graph
*
* @param input A string `Tensor` of any shape.
* @return a new instance of StringStrip
* @see {@link org.tensorflow.op.core.StringStrip}
*/
public StringStrip stringStrip(Operand input) {
return StringStrip.create(scope, input);
}
/**
* Adds an {@link AddV2} operation to the graph
*
* @param x
* @param y
* @return a new instance of AddV2
* @see {@link org.tensorflow.op.core.AddV2}
*/
public AddV2 addV2(Operand x, Operand y) {
return AddV2.create(scope, x, y);
}
/**
* Adds an {@link ParallelDynamicStitch} operation to the graph
*
* @param indices
* @param data
* @return a new instance of ParallelDynamicStitch
* @see {@link org.tensorflow.op.core.ParallelDynamicStitch}
*/
public ParallelDynamicStitch parallelDynamicStitch(Iterable> indices,
Operand data) {
return ParallelDynamicStitch.create(scope, indices, data);
}
/**
* Adds an {@link QuantizedMaxPool} operation to the graph
*
* @param input The 4D (batch x rows x cols x depth) Tensor to MaxReduce over.
* @param minInput The float value that the lowest quantized input value represents.
* @param maxInput The float value that the highest quantized input value represents.
* @param ksize The size of the window for each dimension of the input tensor.
* @param strides The stride of the sliding window for each dimension of the input
* @param padding The type of padding algorithm to use.
* @return a new instance of QuantizedMaxPool
* @see {@link org.tensorflow.op.core.QuantizedMaxPool}
*/
public QuantizedMaxPool quantizedMaxPool(Operand input, Operand minInput,
Operand maxInput, List ksize, List strides, String padding) {
return QuantizedMaxPool.create(scope, input, minInput, maxInput, ksize, strides, padding);
}
/**
* Adds an {@link Constant} operation to the graph
*
* @param shape the tensor shape.
* @param data a buffer containing the tensor data.
* @throws IllegalArgumentException If the tensor shape is not compatible with the buffer
* @see {@link org.tensorflow.op.core.Constant}
*/
public Constant constant(long[] shape, DoubleBuffer data) {
return Constant.create(scope, shape, data);
}
/**
* Adds an {@link MergeV2Checkpoints} operation to the graph
*
* @param checkpointPrefixes prefixes of V2 checkpoints to merge.
* @param destinationPrefix scalar. The desired final prefix. Allowed to be the same
* @param options carries optional attributes values
* @return a new instance of MergeV2Checkpoints
* @see {@link org.tensorflow.op.core.MergeV2Checkpoints}
*/
public MergeV2Checkpoints mergeV2Checkpoints(Operand checkpointPrefixes,
Operand destinationPrefix, MergeV2Checkpoints.Options... options) {
return MergeV2Checkpoints.create(scope, checkpointPrefixes, destinationPrefix, options);
}
/**
* Adds an {@link Conv3DBackpropFilter} operation to the graph
*
* @param input Shape `[batch, depth, rows, cols, in_channels]`.
* @param filter Shape `[depth, rows, cols, in_channels, out_channels]`.
* @param outBackprop Backprop signal of shape `[batch, out_depth, out_rows, out_cols,
* @param strides 1-D tensor of length 5. The stride of the sliding window for each
* @param padding The type of padding algorithm to use.
* @param options carries optional attributes values
* @return a new instance of Conv3DBackpropFilter
* @see {@link org.tensorflow.op.core.Conv3DBackpropFilter}
*/
public Conv3DBackpropFilter conv3DBackpropFilter(Operand input,
Operand filter, Operand outBackprop, List strides, String padding,
Conv3DBackpropFilter.Options... options) {
return Conv3DBackpropFilter.create(scope, input, filter, outBackprop, strides, padding, options);
}
/**
* Adds an {@link DatasetToSingleElement} operation to the graph
*
* @param dataset A handle to a dataset that contains a single element.
* @param outputTypes
* @param outputShapes
* @return a new instance of DatasetToSingleElement
* @see {@link org.tensorflow.op.core.DatasetToSingleElement}
*/
public DatasetToSingleElement datasetToSingleElement(Operand> dataset,
List> outputTypes, List outputShapes) {
return DatasetToSingleElement.create(scope, dataset, outputTypes, outputShapes);
}
/**
* Adds an {@link TensorDataset} operation to the graph
*
* @param components
* @param outputShapes
* @return a new instance of TensorDataset
* @see {@link org.tensorflow.op.core.TensorDataset}
*/
public TensorDataset tensorDataset(Iterable> components, List outputShapes) {
return TensorDataset.create(scope, components, outputShapes);
}
/**
* Adds an {@link QuantizedMatMul} operation to the graph
*
* @param a Must be a two-dimensional tensor.
* @param b Must be a two-dimensional tensor.
* @param minA The float value that the lowest quantized `a` value represents.
* @param maxA The float value that the highest quantized `a` value represents.
* @param minB The float value that the lowest quantized `b` value represents.
* @param maxB The float value that the highest quantized `b` value represents.
* @param Toutput
* @param Tactivation The type of output produced by activation function
* @param options carries optional attributes values
* @return a new instance of QuantizedMatMul
* @see {@link org.tensorflow.op.core.QuantizedMatMul}
*/
public QuantizedMatMul quantizedMatMul(Operand a, Operand b,
Operand minA, Operand maxA, Operand minB, Operand maxB,
Class Toutput, Class Tactivation, QuantizedMatMul.Options... options) {
return QuantizedMatMul.create(scope, a, b, minA, maxA, minB, maxB, Toutput, Tactivation, options);
}
/**
* Adds an {@link InTopK} operation to the graph
*
* @param predictions A `batch_size` x `classes` tensor.
* @param targets A `batch_size` vector of class ids.
* @param k Number of top elements to look at for computing precision.
* @return a new instance of InTopK
* @see {@link org.tensorflow.op.core.InTopK}
*/
public InTopK inTopK(Operand predictions, Operand targets, Long k) {
return InTopK.create(scope, predictions, targets, k);
}
/**
* Adds an {@link TensorListSetItem} operation to the graph
*
* @param inputHandle
* @param index
* @param item
* @return a new instance of TensorListSetItem
* @see {@link org.tensorflow.op.core.TensorListSetItem}
*/
public TensorListSetItem tensorListSetItem(Operand> inputHandle, Operand index,
Operand item) {
return TensorListSetItem.create(scope, inputHandle, index, item);
}
/**
* Adds an {@link SegmentMean} operation to the graph
*
* @param data
* @param segmentIds A 1-D tensor whose rank is equal to the rank of `data`'s
* @return a new instance of SegmentMean
* @see {@link org.tensorflow.op.core.SegmentMean}
*/
public SegmentMean segmentMean(Operand data, Operand segmentIds) {
return SegmentMean.create(scope, data, segmentIds);
}
/**
* Adds an {@link Slice} operation to the graph
*
* @param input
* @param begin begin[i] specifies the offset into the 'i'th dimension of
* @param size size[i] specifies the number of elements of the 'i'th dimension
* @return a new instance of Slice
* @see {@link org.tensorflow.op.core.Slice}
*/
public Slice slice(Operand input, Operand begin, Operand size) {
return Slice.create(scope, input, begin, size);
}
/**
* Adds an {@link ApplyAdagradDA} operation to the graph
*
* @param var Should be from a Variable().
* @param gradientAccumulator Should be from a Variable().
* @param gradientSquaredAccumulator Should be from a Variable().
* @param grad The gradient.
* @param lr Scaling factor. Must be a scalar.
* @param l1 L1 regularization. Must be a scalar.
* @param l2 L2 regularization. Must be a scalar.
* @param globalStep Training step number. Must be a scalar.
* @param options carries optional attributes values
* @return a new instance of ApplyAdagradDA
* @see {@link org.tensorflow.op.core.ApplyAdagradDA}
*/
public ApplyAdagradDA applyAdagradDA(Operand var, Operand gradientAccumulator,
Operand gradientSquaredAccumulator, Operand grad, Operand lr, Operand l1,
Operand l2, Operand globalStep, ApplyAdagradDA.Options... options) {
return ApplyAdagradDA.create(scope, var, gradientAccumulator, gradientSquaredAccumulator, grad, lr, l1, l2, globalStep, options);
}
/**
* Adds an {@link QuantizeAndDequantizeV3} operation to the graph
*
* @param input
* @param inputMin
* @param inputMax
* @param numBits
* @param options carries optional attributes values
* @return a new instance of QuantizeAndDequantizeV3
* @see {@link org.tensorflow.op.core.QuantizeAndDequantizeV3}
*/
public QuantizeAndDequantizeV3 quantizeAndDequantizeV3(Operand input,
Operand inputMin, Operand inputMax, Operand numBits,
QuantizeAndDequantizeV3.Options... options) {
return QuantizeAndDequantizeV3.create(scope, input, inputMin, inputMax, numBits, options);
}
/**
* Adds an {@link DenseToDenseSetOperation} operation to the graph
*
* @param set1 `Tensor` with rank `n`. 1st `n-1` dimensions must be the same as `set2`.
* @param set2 `Tensor` with rank `n`. 1st `n-1` dimensions must be the same as `set1`.
* @param setOperation
* @param options carries optional attributes values
* @return a new instance of DenseToDenseSetOperation
* @see {@link org.tensorflow.op.core.DenseToDenseSetOperation}
*/
public DenseToDenseSetOperation denseToDenseSetOperation(Operand set1, Operand set2,
String setOperation, DenseToDenseSetOperation.Options... options) {
return DenseToDenseSetOperation.create(scope, set1, set2, setOperation, options);
}
/**
* Adds an {@link BatchMatrixTriangularSolve} operation to the graph
*
* @param matrix
* @param rhs
* @param options carries optional attributes values
* @return a new instance of BatchMatrixTriangularSolve
* @see {@link org.tensorflow.op.core.BatchMatrixTriangularSolve}
*/
public BatchMatrixTriangularSolve batchMatrixTriangularSolve(Operand matrix,
Operand rhs, BatchMatrixTriangularSolve.Options... options) {
return BatchMatrixTriangularSolve.create(scope, matrix, rhs, options);
}
/**
* Adds an {@link FakeQuantWithMinMaxArgs} operation to the graph
*
* @param inputs
* @param options carries optional attributes values
* @return a new instance of FakeQuantWithMinMaxArgs
* @see {@link org.tensorflow.op.core.FakeQuantWithMinMaxArgs}
*/
public FakeQuantWithMinMaxArgs fakeQuantWithMinMaxArgs(Operand inputs,
FakeQuantWithMinMaxArgs.Options... options) {
return FakeQuantWithMinMaxArgs.create(scope, inputs, options);
}
/**
* Adds an {@link ResizeBilinear} operation to the graph
*
* @param images 4-D with shape `[batch, height, width, channels]`.
* @param size = A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The
* @param options carries optional attributes values
* @return a new instance of ResizeBilinear
* @see {@link org.tensorflow.op.core.ResizeBilinear}
*/
public ResizeBilinear resizeBilinear(Operand images, Operand size,
ResizeBilinear.Options... options) {
return ResizeBilinear.create(scope, images, size, options);
}
/**
* Adds an {@link MapPeek} operation to the graph
*
* @param key
* @param indices
* @param dtypes
* @param options carries optional attributes values
* @return a new instance of MapPeek
* @see {@link org.tensorflow.op.core.MapPeek}
*/
public MapPeek mapPeek(Operand key, Operand indices, List> dtypes,
MapPeek.Options... options) {
return MapPeek.create(scope, key, indices, dtypes, options);
}
/**
* Adds an {@link TensorArrayGather} operation to the graph
*
* @param handle The handle to a TensorArray.
* @param indices The locations in the TensorArray from which to read tensor elements.
* @param flowIn A float scalar that enforces proper chaining of operations.
* @param dtype The type of the elem that is returned.
* @param options carries optional attributes values
* @return a new instance of TensorArrayGather
* @see {@link org.tensorflow.op.core.TensorArrayGather}
*/
public TensorArrayGather tensorArrayGather(Operand> handle, Operand indices,
Operand flowIn, Class dtype, TensorArrayGather.Options... options) {
return TensorArrayGather.create(scope, handle, indices, flowIn, dtype, options);
}
/**
* Adds an {@link BatchMatrixInverse} operation to the graph
*
* @param input
* @param options carries optional attributes values
* @return a new instance of BatchMatrixInverse
* @see {@link org.tensorflow.op.core.BatchMatrixInverse}
*/
public BatchMatrixInverse batchMatrixInverse(Operand input,
BatchMatrixInverse.Options... options) {
return BatchMatrixInverse.create(scope, input, options);
}
/**
* Adds an {@link Placeholder} operation to the graph
*
* @param dtype The type of elements in the tensor.
* @param options carries optional attributes values
* @return a new instance of Placeholder
* @see {@link org.tensorflow.op.core.Placeholder}
*/
public Placeholder placeholder(Class dtype, Placeholder.Options... options) {
return Placeholder.create(scope, dtype, options);
}
/**
* Adds an {@link SdcaShrinkL1} operation to the graph
*
* @param weights a list of vectors where each value is the weight associated with a
* @param l1 Symmetric l1 regularization strength.
* @param l2 Symmetric l2 regularization strength. Should be a positive float.
* @return a new instance of SdcaShrinkL1
* @see {@link org.tensorflow.op.core.SdcaShrinkL1}
*/
public SdcaShrinkL1 sdcaShrinkL1(Iterable> weights, Float l1, Float l2) {
return SdcaShrinkL1.create(scope, weights, l1, l2);
}
/**
* Adds an {@link DeleteSessionTensor} operation to the graph
*
* @param handle The handle for a tensor stored in the session state.
* @return a new instance of DeleteSessionTensor
* @see {@link org.tensorflow.op.core.DeleteSessionTensor}
*/
public DeleteSessionTensor deleteSessionTensor(Operand handle) {
return DeleteSessionTensor.create(scope, handle);
}
/**
* Adds an {@link SerializeManySparse} operation to the graph
*
* @param sparseIndices 2-D. The `indices` of the minibatch `SparseTensor`.
* @param sparseValues 1-D. The `values` of the minibatch `SparseTensor`.
* @param sparseShape 1-D. The `shape` of the minibatch `SparseTensor`.
* @param outType The `dtype` to use for serialization; the supported types are `string`
* @return a new instance of SerializeManySparse
* @see {@link org.tensorflow.op.core.SerializeManySparse}
*/
public SerializeManySparse serializeManySparse(Operand sparseIndices,
Operand sparseValues, Operand sparseShape, Class outType) {
return SerializeManySparse.create(scope, sparseIndices, sparseValues, sparseShape, outType);
}
/**
* Adds an {@link TFRecordReader} operation to the graph
*
* @param options carries optional attributes values
* @return a new instance of TFRecordReader
* @see {@link org.tensorflow.op.core.TFRecordReader}
*/
public TFRecordReader tFRecordReader(TFRecordReader.Options... options) {
return TFRecordReader.create(scope, options);
}
/**
* Adds an {@link RestoreV2} operation to the graph
*
* @param prefix Must have a single element. The prefix of a V2 checkpoint.
* @param tensorNames shape {N}. The names of the tensors to be restored.
* @param shapeAndSlices shape {N}. The slice specs of the tensors to be restored.
* @param dtypes shape {N}. The list of expected dtype for the tensors. Must match
* @return a new instance of RestoreV2
* @see {@link org.tensorflow.op.core.RestoreV2}
*/
public RestoreV2 restoreV2(Operand prefix, Operand tensorNames,
Operand shapeAndSlices, List> dtypes) {
return RestoreV2.create(scope, prefix, tensorNames, shapeAndSlices, dtypes);
}
/**
* Adds an {@link InitializeTable} operation to the graph
*
* @param tableHandle Handle to a table which will be initialized.
* @param keys Keys of type Tkey.
* @param values Values of type Tval.
* @return a new instance of InitializeTable
* @see {@link org.tensorflow.op.core.InitializeTable}
*/
public InitializeTable initializeTable(Operand> tableHandle, Operand keys,
Operand values) {
return InitializeTable.create(scope, tableHandle, keys, values);
}
/**
* Adds an {@link RequantizationRange} operation to the graph
*
* @param input
* @param inputMin The float value that the minimum quantized input value represents.
* @param inputMax The float value that the maximum quantized input value represents.
* @return a new instance of RequantizationRange
* @see {@link org.tensorflow.op.core.RequantizationRange}
*/
public RequantizationRange requantizationRange(Operand input, Operand inputMin,
Operand inputMax) {
return RequantizationRange.create(scope, input, inputMin, inputMax);
}
/**
* Adds an {@link ComplexAbs} operation to the graph
*
* @param x
* @param Tout
* @return a new instance of ComplexAbs
* @see {@link org.tensorflow.op.core.ComplexAbs}
*/
public ComplexAbs complexAbs(Operand x, Class Tout) {
return ComplexAbs.create(scope, x, Tout);
}
/**
* Adds an {@link Conv2D} operation to the graph
*
* @param input A 4-D tensor. The dimension order is interpreted according to the value
* @param filter A 4-D tensor of shape
* @param strides 1-D tensor of length 4. The stride of the sliding window for each
* @param padding The type of padding algorithm to use.
* @param options carries optional attributes values
* @return a new instance of Conv2D
* @see {@link org.tensorflow.op.core.Conv2D}
*/
public Conv2D conv2D(Operand input, Operand filter,
List strides, String padding, Conv2D.Options... options) {
return Conv2D.create(scope, input, filter, strides, padding, options);
}
/**
* Adds an {@link MaxPoolWithArgmax} operation to the graph
*
* @param input 4-D with shape `[batch, height, width, channels]`. Input to pool over.
* @param ksize The size of the window for each dimension of the input tensor.
* @param strides The stride of the sliding window for each dimension of the
* @param Targmax
* @param padding The type of padding algorithm to use.
* @return a new instance of MaxPoolWithArgmax
* @see {@link org.tensorflow.op.core.MaxPoolWithArgmax}
*/
public MaxPoolWithArgmax maxPoolWithArgmax(Operand input,
List ksize, List strides, Class Targmax, String padding) {
return MaxPoolWithArgmax.create(scope, input, ksize, strides, Targmax, padding);
}
/**
* Adds an {@link TensorArrayUnpack} operation to the graph
*
* @param handle
* @param value
* @param flowIn
* @return a new instance of TensorArrayUnpack
* @see {@link org.tensorflow.op.core.TensorArrayUnpack}
*/
public TensorArrayUnpack tensorArrayUnpack(Operand handle, Operand value,
Operand flowIn) {
return TensorArrayUnpack.create(scope, handle, value, flowIn);
}
/**
* Adds an {@link Skipgram} operation to the graph
*
* @param filename The corpus's text file name.
* @param batchSize The size of produced batch.
* @param options carries optional attributes values
* @return a new instance of Skipgram
* @see {@link org.tensorflow.op.core.Skipgram}
*/
public Skipgram skipgram(String filename, Long batchSize, Skipgram.Options... options) {
return Skipgram.create(scope, filename, batchSize, options);
}
/**
* Adds an {@link Sign} operation to the graph
*
* @param x
* @return a new instance of Sign
* @see {@link org.tensorflow.op.core.Sign}
*/
public Sign sign(Operand x) {
return Sign.create(scope, x);
}
/**
* Adds an {@link TryRpc} operation to the graph
*
* @param address `0-D` or `1-D`. The address (i.e. host_name:port) of the RPC server.
* @param method `0-D` or `1-D`. The method address on the RPC server.
* @param request `0-D` or `1-D`. Serialized proto strings: the rpc request argument.
* @param options carries optional attributes values
* @return a new instance of TryRpc
* @see {@link org.tensorflow.op.core.TryRpc}
*/
public TryRpc tryRpc(Operand address, Operand method, Operand request,
TryRpc.Options... options) {
return TryRpc.create(scope, address, method, request, options);
}
/**
* Adds an {@link ImageSummary} operation to the graph
*
* @param tag Scalar. Used to build the `tag` attribute of the summary values.
* @param tensor 4-D of shape `[batch_size, height, width, channels]` where
* @param options carries optional attributes values
* @return a new instance of ImageSummary
* @see {@link org.tensorflow.op.core.ImageSummary}
*/
public ImageSummary imageSummary(Operand tag, Operand tensor,
ImageSummary.Options... options) {
return ImageSummary.create(scope, tag, tensor, options);
}
/**
* Adds an {@link SparseSegmentSqrtNWithNumSegments} operation to the graph
*
* @param data
* @param indices A 1-D tensor. Has same rank as `segment_ids`.
* @param segmentIds A 1-D tensor. Values should be sorted and can be repeated.
* @param numSegments Should equal the number of distinct segment IDs.
* @return a new instance of SparseSegmentSqrtNWithNumSegments
* @see {@link org.tensorflow.op.core.SparseSegmentSqrtNWithNumSegments}
*/
public SparseSegmentSqrtNWithNumSegments sparseSegmentSqrtNWithNumSegments(Operand data,
Operand indices, Operand segmentIds, Operand numSegments) {
return SparseSegmentSqrtNWithNumSegments.create(scope, data, indices, segmentIds, numSegments);
}
/**
* Adds an {@link Cos} operation to the graph
*
* @param x
* @return a new instance of Cos
* @see {@link org.tensorflow.op.core.Cos}
*/
public Cos cos(Operand x) {
return Cos.create(scope, x);
}
/**
* Adds an {@link ResourceApplyFtrlV2} operation to the graph
*
* @param var Should be from a Variable().
* @param accum Should be from a Variable().
* @param linear Should be from a Variable().
* @param grad The gradient.
* @param lr Scaling factor. Must be a scalar.
* @param l1 L1 regulariation. Must be a scalar.
* @param l2 L2 shrinkage regulariation. Must be a scalar.
* @param l2Shrinkage
* @param lrPower Scaling factor. Must be a scalar.
* @param options carries optional attributes values
* @return a new instance of ResourceApplyFtrlV2
* @see {@link org.tensorflow.op.core.ResourceApplyFtrlV2}
*/
public ResourceApplyFtrlV2 resourceApplyFtrlV2(Operand> var, Operand> accum,
Operand> linear, Operand grad, Operand lr, Operand l1, Operand l2,
Operand