org.tensorflow.op.TrainOps Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of libtensorflow Show documentation
Show all versions of libtensorflow Show documentation
Pure-Java code for the TensorFlow machine intelligence library.
The newest version!
package org.tensorflow.op;
import java.util.List;
import org.tensorflow.Operand;
import org.tensorflow.Shape;
import org.tensorflow.op.train.AccumulatorApplyGradient;
import org.tensorflow.op.train.AccumulatorNumAccumulated;
import org.tensorflow.op.train.AccumulatorSetGlobalStep;
import org.tensorflow.op.train.AccumulatorTakeGradient;
import org.tensorflow.op.train.ApplyAdadelta;
import org.tensorflow.op.train.ApplyAdagrad;
import org.tensorflow.op.train.ApplyAdagradDa;
import org.tensorflow.op.train.ApplyAdam;
import org.tensorflow.op.train.ApplyAddSign;
import org.tensorflow.op.train.ApplyCenteredRmsProp;
import org.tensorflow.op.train.ApplyFtrl;
import org.tensorflow.op.train.ApplyGradientDescent;
import org.tensorflow.op.train.ApplyMomentum;
import org.tensorflow.op.train.ApplyPowerSign;
import org.tensorflow.op.train.ApplyProximalAdagrad;
import org.tensorflow.op.train.ApplyProximalGradientDescent;
import org.tensorflow.op.train.ApplyRmsProp;
import org.tensorflow.op.train.ConditionalAccumulator;
import org.tensorflow.op.train.GenerateVocabRemapping;
import org.tensorflow.op.train.MergeV2Checkpoints;
import org.tensorflow.op.train.NegTrain;
import org.tensorflow.op.train.PreventGradient;
import org.tensorflow.op.train.ResourceApplyAdadelta;
import org.tensorflow.op.train.ResourceApplyAdagrad;
import org.tensorflow.op.train.ResourceApplyAdagradDa;
import org.tensorflow.op.train.ResourceApplyAdam;
import org.tensorflow.op.train.ResourceApplyAddSign;
import org.tensorflow.op.train.ResourceApplyCenteredRmsProp;
import org.tensorflow.op.train.ResourceApplyFtrl;
import org.tensorflow.op.train.ResourceApplyGradientDescent;
import org.tensorflow.op.train.ResourceApplyMomentum;
import org.tensorflow.op.train.ResourceApplyPowerSign;
import org.tensorflow.op.train.ResourceApplyProximalAdagrad;
import org.tensorflow.op.train.ResourceApplyProximalGradientDescent;
import org.tensorflow.op.train.ResourceApplyRmsProp;
import org.tensorflow.op.train.ResourceSparseApplyAdadelta;
import org.tensorflow.op.train.ResourceSparseApplyAdagrad;
import org.tensorflow.op.train.ResourceSparseApplyAdagradDa;
import org.tensorflow.op.train.ResourceSparseApplyCenteredRmsProp;
import org.tensorflow.op.train.ResourceSparseApplyFtrl;
import org.tensorflow.op.train.ResourceSparseApplyMomentum;
import org.tensorflow.op.train.ResourceSparseApplyProximalAdagrad;
import org.tensorflow.op.train.ResourceSparseApplyProximalGradientDescent;
import org.tensorflow.op.train.ResourceSparseApplyRmsProp;
import org.tensorflow.op.train.Restore;
import org.tensorflow.op.train.RestoreSlice;
import org.tensorflow.op.train.Save;
import org.tensorflow.op.train.SaveSlices;
import org.tensorflow.op.train.SdcaFprint;
import org.tensorflow.op.train.SdcaShrinkL1;
import org.tensorflow.op.train.SparseApplyAdadelta;
import org.tensorflow.op.train.SparseApplyAdagrad;
import org.tensorflow.op.train.SparseApplyAdagradDa;
import org.tensorflow.op.train.SparseApplyCenteredRmsProp;
import org.tensorflow.op.train.SparseApplyFtrl;
import org.tensorflow.op.train.SparseApplyMomentum;
import org.tensorflow.op.train.SparseApplyProximalAdagrad;
import org.tensorflow.op.train.SparseApplyProximalGradientDescent;
import org.tensorflow.op.train.SparseApplyRmsProp;
import org.tensorflow.op.train.TileGrad;
/**
* An API for building {@code train} operations as {@link Op Op}s
*
* @see {@link Ops}
*/
public final class TrainOps {
private final Scope scope;
TrainOps(Scope scope) {
this.scope = scope;
}
/**
* Builds an {@link SparseApplyRmsProp} operation
*
* @param var Should be from a Variable().
* @param ms Should be from a Variable().
* @param mom Should be from a Variable().
* @param lr Scaling factor. Must be a scalar.
* @param rho Decay rate. Must be a scalar.
* @param momentum
* @param epsilon Ridge term. Must be a scalar.
* @param grad The gradient.
* @param indices A vector of indices into the first dimension of var, ms and mom.
* @param options carries optional attributes values
* @return a new instance of SparseApplyRmsProp
* @see org.tensorflow.op.train.SparseApplyRmsProp
*/
public SparseApplyRmsProp sparseApplyRmsProp(Operand var,
Operand ms, Operand mom, Operand lr, Operand rho, Operand momentum,
Operand epsilon, Operand grad, Operand indices,
SparseApplyRmsProp.Options... options) {
return SparseApplyRmsProp.create(scope, var, ms, mom, lr, rho, momentum, epsilon, grad, indices, options);
}
/**
* Builds an {@link ApplyMomentum} operation
*
* @param var Should be from a Variable().
* @param accum Should be from a Variable().
* @param lr Scaling factor. Must be a scalar.
* @param grad The gradient.
* @param momentum Momentum. Must be a scalar.
* @param options carries optional attributes values
* @return a new instance of ApplyMomentum
* @see org.tensorflow.op.train.ApplyMomentum
*/
public ApplyMomentum applyMomentum(Operand var, Operand accum, Operand lr,
Operand grad, Operand momentum, ApplyMomentum.Options... options) {
return ApplyMomentum.create(scope, var, accum, lr, grad, momentum, options);
}
/**
* Builds an {@link SparseApplyMomentum} operation
*
* @param var Should be from a Variable().
* @param accum Should be from a Variable().
* @param lr Learning rate. Must be a scalar.
* @param grad The gradient.
* @param indices A vector of indices into the first dimension of var and accum.
* @param momentum Momentum. Must be a scalar.
* @param options carries optional attributes values
* @return a new instance of SparseApplyMomentum
* @see org.tensorflow.op.train.SparseApplyMomentum
*/
public SparseApplyMomentum sparseApplyMomentum(Operand var,
Operand accum, Operand lr, Operand grad, Operand indices, Operand momentum,
SparseApplyMomentum.Options... options) {
return SparseApplyMomentum.create(scope, var, accum, lr, grad, indices, momentum, options);
}
/**
* Builds an {@link ResourceSparseApplyRmsProp} operation
*
* @param var Should be from a Variable().
* @param ms Should be from a Variable().
* @param mom Should be from a Variable().
* @param lr Scaling factor. Must be a scalar.
* @param rho Decay rate. Must be a scalar.
* @param momentum
* @param epsilon Ridge term. Must be a scalar.
* @param grad The gradient.
* @param indices A vector of indices into the first dimension of var, ms and mom.
* @param options carries optional attributes values
* @return a new instance of ResourceSparseApplyRmsProp
* @see org.tensorflow.op.train.ResourceSparseApplyRmsProp
*/
public ResourceSparseApplyRmsProp resourceSparseApplyRmsProp(Operand> var,
Operand> ms, Operand> mom, Operand lr, Operand rho, Operand momentum,
Operand epsilon, Operand grad, Operand indices,
ResourceSparseApplyRmsProp.Options... options) {
return ResourceSparseApplyRmsProp.create(scope, var, ms, mom, lr, rho, momentum, epsilon, grad, indices, options);
}
/**
* Builds an {@link ResourceApplyAdagradDa} operation
*
* @param var Should be from a Variable().
* @param gradientAccumulator Should be from a Variable().
* @param gradientSquaredAccumulator Should be from a Variable().
* @param grad The gradient.
* @param lr Scaling factor. Must be a scalar.
* @param l1 L1 regularization. Must be a scalar.
* @param l2 L2 regularization. Must be a scalar.
* @param globalStep Training step number. Must be a scalar.
* @param options carries optional attributes values
* @return a new instance of ResourceApplyAdagradDa
* @see org.tensorflow.op.train.ResourceApplyAdagradDa
*/
public ResourceApplyAdagradDa resourceApplyAdagradDa(Operand> var,
Operand> gradientAccumulator, Operand> gradientSquaredAccumulator, Operand grad,
Operand lr, Operand l1, Operand l2, Operand globalStep,
ResourceApplyAdagradDa.Options... options) {
return ResourceApplyAdagradDa.create(scope, var, gradientAccumulator, gradientSquaredAccumulator, grad, lr, l1, l2, globalStep, options);
}
/**
* Builds an {@link ApplyAddSign} operation
*
* @param var Should be from a Variable().
* @param m Should be from a Variable().
* @param lr Scaling factor. Must be a scalar.
* @param alpha Must be a scalar.
* @param signDecay Must be a scalar.
* @param beta Must be a scalar.
* @param grad The gradient.
* @param options carries optional attributes values
* @return a new instance of ApplyAddSign
* @see org.tensorflow.op.train.ApplyAddSign
*/
public ApplyAddSign applyAddSign(Operand var, Operand m, Operand lr,
Operand alpha, Operand signDecay, Operand beta, Operand grad,
ApplyAddSign.Options... options) {
return ApplyAddSign.create(scope, var, m, lr, alpha, signDecay, beta, grad, options);
}
/**
* Builds an {@link ApplyGradientDescent} operation
*
* @param var Should be from a Variable().
* @param alpha Scaling factor. Must be a scalar.
* @param delta The change.
* @param options carries optional attributes values
* @return a new instance of ApplyGradientDescent
* @see org.tensorflow.op.train.ApplyGradientDescent
*/
public ApplyGradientDescent applyGradientDescent(Operand var, Operand alpha,
Operand delta, ApplyGradientDescent.Options... options) {
return ApplyGradientDescent.create(scope, var, alpha, delta, options);
}
/**
* Builds an {@link SparseApplyFtrl} operation
*
* @param var Should be from a Variable().
* @param accum Should be from a Variable().
* @param linear Should be from a Variable().
* @param grad The gradient.
* @param indices A vector of indices into the first dimension of var and accum.
* @param lr Scaling factor. Must be a scalar.
* @param l1 L1 regularization. Must be a scalar.
* @param l2 L2 shrinkage regulariation. Must be a scalar.
* @param l2Shrinkage
* @param lrPower Scaling factor. Must be a scalar.
* @param options carries optional attributes values
* @return a new instance of SparseApplyFtrl
* @see org.tensorflow.op.train.SparseApplyFtrl
*/
public SparseApplyFtrl sparseApplyFtrl(Operand var, Operand accum,
Operand linear, Operand grad, Operand indices, Operand lr, Operand l1,
Operand l2, Operand l2Shrinkage, Operand lrPower,
SparseApplyFtrl.Options... options) {
return SparseApplyFtrl.create(scope, var, accum, linear, grad, indices, lr, l1, l2, l2Shrinkage, lrPower, options);
}
/**
* Builds an {@link ApplyAdam} operation
*
* @param var Should be from a Variable().
* @param m Should be from a Variable().
* @param v Should be from a Variable().
* @param beta1Power Must be a scalar.
* @param beta2Power Must be a scalar.
* @param lr Scaling factor. Must be a scalar.
* @param beta1 Momentum factor. Must be a scalar.
* @param beta2 Momentum factor. Must be a scalar.
* @param epsilon Ridge term. Must be a scalar.
* @param grad The gradient.
* @param options carries optional attributes values
* @return a new instance of ApplyAdam
* @see org.tensorflow.op.train.ApplyAdam
*/
public ApplyAdam applyAdam(Operand var, Operand m, Operand v,
Operand beta1Power, Operand beta2Power, Operand lr, Operand beta1,
Operand beta2, Operand epsilon, Operand grad, ApplyAdam.Options... options) {
return ApplyAdam.create(scope, var, m, v, beta1Power, beta2Power, lr, beta1, beta2, epsilon, grad, options);
}
/**
* Builds an {@link NegTrain} operation
*
* @param wIn input word embedding.
* @param wOut output word embedding.
* @param examples A vector of word ids.
* @param labels A vector of word ids.
* @param lr
* @param vocabCount Count of words in the vocabulary.
* @param numNegativeSamples Number of negative samples per example.
* @return a new instance of NegTrain
* @see org.tensorflow.op.train.NegTrain
*/
public NegTrain negTrain(Operand wIn, Operand wOut, Operand examples,
Operand labels, Operand lr, List vocabCount, Long numNegativeSamples) {
return NegTrain.create(scope, wIn, wOut, examples, labels, lr, vocabCount, numNegativeSamples);
}
/**
* Builds an {@link PreventGradient} operation
*
* @param input any tensor.
* @param options carries optional attributes values
* @return a new instance of PreventGradient
* @see org.tensorflow.op.train.PreventGradient
*/
public PreventGradient preventGradient(Operand input,
PreventGradient.Options... options) {
return PreventGradient.create(scope, input, options);
}
/**
* Builds an {@link ApplyProximalAdagrad} operation
*
* @param var Should be from a Variable().
* @param accum Should be from a Variable().
* @param lr Scaling factor. Must be a scalar.
* @param l1 L1 regularization. Must be a scalar.
* @param l2 L2 regularization. Must be a scalar.
* @param grad The gradient.
* @param options carries optional attributes values
* @return a new instance of ApplyProximalAdagrad
* @see org.tensorflow.op.train.ApplyProximalAdagrad
*/
public ApplyProximalAdagrad applyProximalAdagrad(Operand var, Operand accum,
Operand lr, Operand l1, Operand l2, Operand grad,
ApplyProximalAdagrad.Options... options) {
return ApplyProximalAdagrad.create(scope, var, accum, lr, l1, l2, grad, options);
}
/**
* Builds an {@link AccumulatorNumAccumulated} operation
*
* @param handle The handle to an accumulator.
* @return a new instance of AccumulatorNumAccumulated
* @see org.tensorflow.op.train.AccumulatorNumAccumulated
*/
public AccumulatorNumAccumulated accumulatorNumAccumulated(Operand handle) {
return AccumulatorNumAccumulated.create(scope, handle);
}
/**
* Builds an {@link ApplyAdagrad} operation
*
* @param var Should be from a Variable().
* @param accum Should be from a Variable().
* @param lr Scaling factor. Must be a scalar.
* @param grad The gradient.
* @param options carries optional attributes values
* @return a new instance of ApplyAdagrad
* @see org.tensorflow.op.train.ApplyAdagrad
*/
public ApplyAdagrad applyAdagrad(Operand var, Operand accum, Operand lr,
Operand grad, ApplyAdagrad.Options... options) {
return ApplyAdagrad.create(scope, var, accum, lr, grad, options);
}
/**
* Builds an {@link ResourceApplyProximalAdagrad} operation
*
* @param var Should be from a Variable().
* @param accum Should be from a Variable().
* @param lr Scaling factor. Must be a scalar.
* @param l1 L1 regularization. Must be a scalar.
* @param l2 L2 regularization. Must be a scalar.
* @param grad The gradient.
* @param options carries optional attributes values
* @return a new instance of ResourceApplyProximalAdagrad
* @see org.tensorflow.op.train.ResourceApplyProximalAdagrad
*/
public ResourceApplyProximalAdagrad resourceApplyProximalAdagrad(Operand> var,
Operand> accum, Operand lr, Operand l1, Operand l2, Operand grad,
ResourceApplyProximalAdagrad.Options... options) {
return ResourceApplyProximalAdagrad.create(scope, var, accum, lr, l1, l2, grad, options);
}
/**
* Builds an {@link ResourceSparseApplyAdagradDa} operation
*
* @param var Should be from a Variable().
* @param gradientAccumulator Should be from a Variable().
* @param gradientSquaredAccumulator Should be from a Variable().
* @param grad The gradient.
* @param indices A vector of indices into the first dimension of var and accum.
* @param lr Learning rate. Must be a scalar.
* @param l1 L1 regularization. Must be a scalar.
* @param l2 L2 regularization. Must be a scalar.
* @param globalStep Training step number. Must be a scalar.
* @param options carries optional attributes values
* @return a new instance of ResourceSparseApplyAdagradDa
* @see org.tensorflow.op.train.ResourceSparseApplyAdagradDa
*/
public ResourceSparseApplyAdagradDa resourceSparseApplyAdagradDa(Operand> var,
Operand> gradientAccumulator, Operand> gradientSquaredAccumulator, Operand grad,
Operand indices, Operand lr, Operand l1, Operand l2, Operand globalStep,
ResourceSparseApplyAdagradDa.Options... options) {
return ResourceSparseApplyAdagradDa.create(scope, var, gradientAccumulator, gradientSquaredAccumulator, grad, indices, lr, l1, l2, globalStep, options);
}
/**
* Builds an {@link SparseApplyCenteredRmsProp} operation
*
* @param var Should be from a Variable().
* @param mg Should be from a Variable().
* @param ms Should be from a Variable().
* @param mom Should be from a Variable().
* @param lr Scaling factor. Must be a scalar.
* @param rho Decay rate. Must be a scalar.
* @param momentum
* @param epsilon Ridge term. Must be a scalar.
* @param grad The gradient.
* @param indices A vector of indices into the first dimension of var, ms and mom.
* @param options carries optional attributes values
* @return a new instance of SparseApplyCenteredRmsProp
* @see org.tensorflow.op.train.SparseApplyCenteredRmsProp
*/
public SparseApplyCenteredRmsProp sparseApplyCenteredRmsProp(Operand var,
Operand mg, Operand ms, Operand mom, Operand lr, Operand rho,
Operand momentum, Operand epsilon, Operand grad, Operand indices,
SparseApplyCenteredRmsProp.Options... options) {
return SparseApplyCenteredRmsProp.create(scope, var, mg, ms, mom, lr, rho, momentum, epsilon, grad, indices, options);
}
/**
* Builds an {@link AccumulatorSetGlobalStep} operation
*
* @param handle The handle to an accumulator.
* @param newGlobalStep The new global_step value to set.
* @return a new instance of AccumulatorSetGlobalStep
* @see org.tensorflow.op.train.AccumulatorSetGlobalStep
*/
public AccumulatorSetGlobalStep accumulatorSetGlobalStep(Operand handle,
Operand newGlobalStep) {
return AccumulatorSetGlobalStep.create(scope, handle, newGlobalStep);
}
/**
* Builds an {@link ApplyProximalGradientDescent} operation
*
* @param var Should be from a Variable().
* @param alpha Scaling factor. Must be a scalar.
* @param l1 L1 regularization. Must be a scalar.
* @param l2 L2 regularization. Must be a scalar.
* @param delta The change.
* @param options carries optional attributes values
* @return a new instance of ApplyProximalGradientDescent
* @see org.tensorflow.op.train.ApplyProximalGradientDescent
*/
public ApplyProximalGradientDescent applyProximalGradientDescent(Operand var,
Operand alpha, Operand l1, Operand l2, Operand delta,
ApplyProximalGradientDescent.Options... options) {
return ApplyProximalGradientDescent.create(scope, var, alpha, l1, l2, delta, options);
}
/**
* Builds an {@link Save} operation
*
* @param prefix Must have a single element. The prefix of the V2 checkpoint to which we
* @param tensorNames shape {N}. The names of the tensors to be saved.
* @param shapeAndSlices shape {N}. The slice specs of the tensors to be saved.
* @param tensors `N` tensors to save.
* @return a new instance of Save
* @see org.tensorflow.op.train.Save
*/
public Save save(Operand prefix, Operand tensorNames,
Operand shapeAndSlices, Iterable> tensors) {
return Save.create(scope, prefix, tensorNames, shapeAndSlices, tensors);
}
/**
* Builds an {@link ApplyPowerSign} operation
*
* @param var Should be from a Variable().
* @param m Should be from a Variable().
* @param lr Scaling factor. Must be a scalar.
* @param logbase Must be a scalar.
* @param signDecay Must be a scalar.
* @param beta Must be a scalar.
* @param grad The gradient.
* @param options carries optional attributes values
* @return a new instance of ApplyPowerSign
* @see org.tensorflow.op.train.ApplyPowerSign
*/
public ApplyPowerSign applyPowerSign(Operand var, Operand m, Operand lr,
Operand logbase, Operand signDecay, Operand beta, Operand grad,
ApplyPowerSign.Options... options) {
return ApplyPowerSign.create(scope, var, m, lr, logbase, signDecay, beta, grad, options);
}
/**
* Builds an {@link ApplyAdadelta} operation
*
* @param var Should be from a Variable().
* @param accum Should be from a Variable().
* @param accumUpdate Should be from a Variable().
* @param lr Scaling factor. Must be a scalar.
* @param rho Decay factor. Must be a scalar.
* @param epsilon Constant factor. Must be a scalar.
* @param grad The gradient.
* @param options carries optional attributes values
* @return a new instance of ApplyAdadelta
* @see org.tensorflow.op.train.ApplyAdadelta
*/
public ApplyAdadelta applyAdadelta(Operand var, Operand accum,
Operand accumUpdate, Operand lr, Operand rho, Operand epsilon, Operand grad,
ApplyAdadelta.Options... options) {
return ApplyAdadelta.create(scope, var, accum, accumUpdate, lr, rho, epsilon, grad, options);
}
/**
* Builds an {@link Restore} operation
*
* @param prefix Must have a single element. The prefix of a V2 checkpoint.
* @param tensorNames shape {N}. The names of the tensors to be restored.
* @param shapeAndSlices shape {N}. The slice specs of the tensors to be restored.
* @param dtypes shape {N}. The list of expected dtype for the tensors. Must match
* @return a new instance of Restore
* @see org.tensorflow.op.train.Restore
*/
public Restore restore(Operand prefix, Operand tensorNames,
Operand shapeAndSlices, List> dtypes) {
return Restore.create(scope, prefix, tensorNames, shapeAndSlices, dtypes);
}
/**
* Builds an {@link ResourceApplyRmsProp} operation
*
* @param var Should be from a Variable().
* @param ms Should be from a Variable().
* @param mom Should be from a Variable().
* @param lr Scaling factor. Must be a scalar.
* @param rho Decay rate. Must be a scalar.
* @param momentum
* @param epsilon Ridge term. Must be a scalar.
* @param grad The gradient.
* @param options carries optional attributes values
* @return a new instance of ResourceApplyRmsProp
* @see org.tensorflow.op.train.ResourceApplyRmsProp
*/
public ResourceApplyRmsProp resourceApplyRmsProp(Operand> var, Operand> ms,
Operand> mom, Operand lr, Operand rho, Operand momentum, Operand epsilon,
Operand grad, ResourceApplyRmsProp.Options... options) {
return ResourceApplyRmsProp.create(scope, var, ms, mom, lr, rho, momentum, epsilon, grad, options);
}
/**
* Builds an {@link RestoreSlice} operation
*
* @param filePattern Must have a single element. The pattern of the files from
* @param tensorName Must have a single element. The name of the tensor to be
* @param shapeAndSlice Scalar. The shapes and slice specifications to use when
* @param dt The type of the tensor to be restored.
* @param options carries optional attributes values
* @return a new instance of RestoreSlice
* @see org.tensorflow.op.train.RestoreSlice
*/
public RestoreSlice restoreSlice(Operand filePattern, Operand tensorName,
Operand shapeAndSlice, Class dt, RestoreSlice.Options... options) {
return RestoreSlice.create(scope, filePattern, tensorName, shapeAndSlice, dt, options);
}
/**
* Builds an {@link ResourceApplyCenteredRmsProp} operation
*
* @param var Should be from a Variable().
* @param mg Should be from a Variable().
* @param ms Should be from a Variable().
* @param mom Should be from a Variable().
* @param lr Scaling factor. Must be a scalar.
* @param rho Decay rate. Must be a scalar.
* @param momentum
* @param epsilon Ridge term. Must be a scalar.
* @param grad The gradient.
* @param options carries optional attributes values
* @return a new instance of ResourceApplyCenteredRmsProp
* @see org.tensorflow.op.train.ResourceApplyCenteredRmsProp
*/
public ResourceApplyCenteredRmsProp resourceApplyCenteredRmsProp(Operand> var,
Operand> mg, Operand> ms, Operand> mom, Operand lr, Operand rho,
Operand momentum, Operand epsilon, Operand grad,
ResourceApplyCenteredRmsProp.Options... options) {
return ResourceApplyCenteredRmsProp.create(scope, var, mg, ms, mom, lr, rho, momentum, epsilon, grad, options);
}
/**
* Builds an {@link SparseApplyAdagrad} operation
*
* @param var Should be from a Variable().
* @param accum Should be from a Variable().
* @param lr Learning rate. Must be a scalar.
* @param grad The gradient.
* @param indices A vector of indices into the first dimension of var and accum.
* @param options carries optional attributes values
* @return a new instance of SparseApplyAdagrad
* @see org.tensorflow.op.train.SparseApplyAdagrad
*/
public SparseApplyAdagrad sparseApplyAdagrad(Operand var,
Operand accum, Operand lr, Operand grad, Operand indices,
SparseApplyAdagrad.Options... options) {
return SparseApplyAdagrad.create(scope, var, accum, lr, grad, indices, options);
}
/**
* Builds an {@link ResourceApplyProximalGradientDescent} operation
*
* @param var Should be from a Variable().
* @param alpha Scaling factor. Must be a scalar.
* @param l1 L1 regularization. Must be a scalar.
* @param l2 L2 regularization. Must be a scalar.
* @param delta The change.
* @param options carries optional attributes values
* @return a new instance of ResourceApplyProximalGradientDescent
* @see org.tensorflow.op.train.ResourceApplyProximalGradientDescent
*/
public ResourceApplyProximalGradientDescent resourceApplyProximalGradientDescent(Operand> var,
Operand alpha, Operand l1, Operand l2, Operand delta,
ResourceApplyProximalGradientDescent.Options... options) {
return ResourceApplyProximalGradientDescent.create(scope, var, alpha, l1, l2, delta, options);
}
/**
* Builds an {@link ApplyFtrl} operation
*
* @param var Should be from a Variable().
* @param accum Should be from a Variable().
* @param linear Should be from a Variable().
* @param grad The gradient.
* @param lr Scaling factor. Must be a scalar.
* @param l1 L1 regulariation. Must be a scalar.
* @param l2 L2 shrinkage regulariation. Must be a scalar.
* @param l2Shrinkage
* @param lrPower Scaling factor. Must be a scalar.
* @param options carries optional attributes values
* @return a new instance of ApplyFtrl
* @see org.tensorflow.op.train.ApplyFtrl
*/
public ApplyFtrl applyFtrl(Operand var, Operand accum, Operand linear,
Operand grad, Operand lr, Operand l1, Operand l2, Operand l2Shrinkage,
Operand lrPower, ApplyFtrl.Options... options) {
return ApplyFtrl.create(scope, var, accum, linear, grad, lr, l1, l2, l2Shrinkage, lrPower, options);
}
/**
* Builds an {@link ResourceApplyFtrl} operation
*
* @param var Should be from a Variable().
* @param accum Should be from a Variable().
* @param linear Should be from a Variable().
* @param grad The gradient.
* @param lr Scaling factor. Must be a scalar.
* @param l1 L1 regulariation. Must be a scalar.
* @param l2 L2 shrinkage regulariation. Must be a scalar.
* @param l2Shrinkage
* @param lrPower Scaling factor. Must be a scalar.
* @param options carries optional attributes values
* @return a new instance of ResourceApplyFtrl
* @see org.tensorflow.op.train.ResourceApplyFtrl
*/
public ResourceApplyFtrl resourceApplyFtrl(Operand> var, Operand> accum,
Operand> linear, Operand grad, Operand lr, Operand l1, Operand l2,
Operand l2Shrinkage, Operand lrPower, ResourceApplyFtrl.Options... options) {
return ResourceApplyFtrl.create(scope, var, accum, linear, grad, lr, l1, l2, l2Shrinkage, lrPower, options);
}
/**
* Builds an {@link ResourceSparseApplyFtrl} operation
*
* @param var Should be from a Variable().
* @param accum Should be from a Variable().
* @param linear Should be from a Variable().
* @param grad The gradient.
* @param indices A vector of indices into the first dimension of var and accum.
* @param lr Scaling factor. Must be a scalar.
* @param l1 L1 regularization. Must be a scalar.
* @param l2 L2 shrinkage regulariation. Must be a scalar.
* @param l2Shrinkage
* @param lrPower Scaling factor. Must be a scalar.
* @param options carries optional attributes values
* @return a new instance of ResourceSparseApplyFtrl
* @see org.tensorflow.op.train.ResourceSparseApplyFtrl
*/
public ResourceSparseApplyFtrl resourceSparseApplyFtrl(Operand> var,
Operand> accum, Operand> linear, Operand grad, Operand indices, Operand lr,
Operand l1, Operand l2, Operand l2Shrinkage, Operand lrPower,
ResourceSparseApplyFtrl.Options... options) {
return ResourceSparseApplyFtrl.create(scope, var, accum, linear, grad, indices, lr, l1, l2, l2Shrinkage, lrPower, options);
}
/**
* Builds an {@link ResourceSparseApplyProximalGradientDescent} operation
*
* @param var Should be from a Variable().
* @param alpha Scaling factor. Must be a scalar.
* @param l1 L1 regularization. Must be a scalar.
* @param l2 L2 regularization. Must be a scalar.
* @param grad The gradient.
* @param indices A vector of indices into the first dimension of var and accum.
* @param options carries optional attributes values
* @return a new instance of ResourceSparseApplyProximalGradientDescent
* @see org.tensorflow.op.train.ResourceSparseApplyProximalGradientDescent
*/
public ResourceSparseApplyProximalGradientDescent resourceSparseApplyProximalGradientDescent(Operand> var,
Operand alpha, Operand l1, Operand l2, Operand grad, Operand indices,
ResourceSparseApplyProximalGradientDescent.Options... options) {
return ResourceSparseApplyProximalGradientDescent.create(scope, var, alpha, l1, l2, grad, indices, options);
}
/**
* Builds an {@link ResourceApplyAdagrad} operation
*
* @param var Should be from a Variable().
* @param accum Should be from a Variable().
* @param lr Scaling factor. Must be a scalar.
* @param grad The gradient.
* @param options carries optional attributes values
* @return a new instance of ResourceApplyAdagrad
* @see org.tensorflow.op.train.ResourceApplyAdagrad
*/
public ResourceApplyAdagrad resourceApplyAdagrad(Operand> var, Operand> accum,
Operand lr, Operand grad, ResourceApplyAdagrad.Options... options) {
return ResourceApplyAdagrad.create(scope, var, accum, lr, grad, options);
}
/**
* Builds an {@link SparseApplyAdagradDa} operation
*
* @param var Should be from a Variable().
* @param gradientAccumulator Should be from a Variable().
* @param gradientSquaredAccumulator Should be from a Variable().
* @param grad The gradient.
* @param indices A vector of indices into the first dimension of var and accum.
* @param lr Learning rate. Must be a scalar.
* @param l1 L1 regularization. Must be a scalar.
* @param l2 L2 regularization. Must be a scalar.
* @param globalStep Training step number. Must be a scalar.
* @param options carries optional attributes values
* @return a new instance of SparseApplyAdagradDa
* @see org.tensorflow.op.train.SparseApplyAdagradDa
*/
public SparseApplyAdagradDa sparseApplyAdagradDa(Operand var,
Operand gradientAccumulator, Operand gradientSquaredAccumulator, Operand grad,
Operand indices, Operand lr, Operand l1, Operand l2, Operand globalStep,
SparseApplyAdagradDa.Options... options) {
return SparseApplyAdagradDa.create(scope, var, gradientAccumulator, gradientSquaredAccumulator, grad, indices, lr, l1, l2, globalStep, options);
}
/**
* Builds an {@link ResourceSparseApplyAdagrad} operation
*
* @param var Should be from a Variable().
* @param accum Should be from a Variable().
* @param lr Learning rate. Must be a scalar.
* @param grad The gradient.
* @param indices A vector of indices into the first dimension of var and accum.
* @param options carries optional attributes values
* @return a new instance of ResourceSparseApplyAdagrad
* @see org.tensorflow.op.train.ResourceSparseApplyAdagrad
*/
public ResourceSparseApplyAdagrad resourceSparseApplyAdagrad(Operand> var,
Operand> accum, Operand lr, Operand grad, Operand indices,
ResourceSparseApplyAdagrad.Options... options) {
return ResourceSparseApplyAdagrad.create(scope, var, accum, lr, grad, indices, options);
}
/**
* Builds an {@link ResourceSparseApplyMomentum} operation
*
* @param var Should be from a Variable().
* @param accum Should be from a Variable().
* @param lr Learning rate. Must be a scalar.
* @param grad The gradient.
* @param indices A vector of indices into the first dimension of var and accum.
* @param momentum Momentum. Must be a scalar.
* @param options carries optional attributes values
* @return a new instance of ResourceSparseApplyMomentum
* @see org.tensorflow.op.train.ResourceSparseApplyMomentum
*/
public ResourceSparseApplyMomentum resourceSparseApplyMomentum(Operand> var,
Operand> accum, Operand lr, Operand grad, Operand indices, Operand momentum,
ResourceSparseApplyMomentum.Options... options) {
return ResourceSparseApplyMomentum.create(scope, var, accum, lr, grad, indices, momentum, options);
}
/**
* Builds an {@link SdcaShrinkL1} operation
*
* @param weights a list of vectors where each value is the weight associated with a
* @param l1 Symmetric l1 regularization strength.
* @param l2 Symmetric l2 regularization strength. Should be a positive float.
* @return a new instance of SdcaShrinkL1
* @see org.tensorflow.op.train.SdcaShrinkL1
*/
public SdcaShrinkL1 sdcaShrinkL1(Iterable> weights, Float l1, Float l2) {
return SdcaShrinkL1.create(scope, weights, l1, l2);
}
/**
* Builds an {@link ResourceApplyAddSign} operation
*
* @param var Should be from a Variable().
* @param m Should be from a Variable().
* @param lr Scaling factor. Must be a scalar.
* @param alpha Must be a scalar.
* @param signDecay Must be a scalar.
* @param beta Must be a scalar.
* @param grad The gradient.
* @param options carries optional attributes values
* @return a new instance of ResourceApplyAddSign
* @see org.tensorflow.op.train.ResourceApplyAddSign
*/
public ResourceApplyAddSign resourceApplyAddSign(Operand> var, Operand> m, Operand lr,
Operand alpha, Operand signDecay, Operand beta, Operand