org.tensorflow.framework.GraphDef Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of proto Show documentation
Show all versions of proto Show documentation
Java API for TensorFlow protocol buffers.
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: tensorflow/core/framework/graph.proto
package org.tensorflow.framework;
/**
*
* Represents the graph of operations
*
*
* Protobuf type {@code tensorflow.GraphDef}
*/
public final class GraphDef extends
com.google.protobuf.GeneratedMessageV3 implements
// @@protoc_insertion_point(message_implements:tensorflow.GraphDef)
GraphDefOrBuilder {
private static final long serialVersionUID = 0L;
// Use GraphDef.newBuilder() to construct.
private GraphDef(com.google.protobuf.GeneratedMessageV3.Builder> builder) {
super(builder);
}
private GraphDef() {
node_ = java.util.Collections.emptyList();
version_ = 0;
}
@java.lang.Override
public final com.google.protobuf.UnknownFieldSet
getUnknownFields() {
return this.unknownFields;
}
private GraphDef(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
this();
if (extensionRegistry == null) {
throw new java.lang.NullPointerException();
}
int mutable_bitField0_ = 0;
com.google.protobuf.UnknownFieldSet.Builder unknownFields =
com.google.protobuf.UnknownFieldSet.newBuilder();
try {
boolean done = false;
while (!done) {
int tag = input.readTag();
switch (tag) {
case 0:
done = true;
break;
default: {
if (!parseUnknownFieldProto3(
input, unknownFields, extensionRegistry, tag)) {
done = true;
}
break;
}
case 10: {
if (!((mutable_bitField0_ & 0x00000001) == 0x00000001)) {
node_ = new java.util.ArrayList();
mutable_bitField0_ |= 0x00000001;
}
node_.add(
input.readMessage(org.tensorflow.framework.NodeDef.parser(), extensionRegistry));
break;
}
case 18: {
org.tensorflow.framework.FunctionDefLibrary.Builder subBuilder = null;
if (library_ != null) {
subBuilder = library_.toBuilder();
}
library_ = input.readMessage(org.tensorflow.framework.FunctionDefLibrary.parser(), extensionRegistry);
if (subBuilder != null) {
subBuilder.mergeFrom(library_);
library_ = subBuilder.buildPartial();
}
break;
}
case 24: {
version_ = input.readInt32();
break;
}
case 34: {
org.tensorflow.framework.VersionDef.Builder subBuilder = null;
if (versions_ != null) {
subBuilder = versions_.toBuilder();
}
versions_ = input.readMessage(org.tensorflow.framework.VersionDef.parser(), extensionRegistry);
if (subBuilder != null) {
subBuilder.mergeFrom(versions_);
versions_ = subBuilder.buildPartial();
}
break;
}
}
}
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
throw e.setUnfinishedMessage(this);
} catch (java.io.IOException e) {
throw new com.google.protobuf.InvalidProtocolBufferException(
e).setUnfinishedMessage(this);
} finally {
if (((mutable_bitField0_ & 0x00000001) == 0x00000001)) {
node_ = java.util.Collections.unmodifiableList(node_);
}
this.unknownFields = unknownFields.build();
makeExtensionsImmutable();
}
}
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return org.tensorflow.framework.GraphProtos.internal_static_tensorflow_GraphDef_descriptor;
}
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return org.tensorflow.framework.GraphProtos.internal_static_tensorflow_GraphDef_fieldAccessorTable
.ensureFieldAccessorsInitialized(
org.tensorflow.framework.GraphDef.class, org.tensorflow.framework.GraphDef.Builder.class);
}
private int bitField0_;
public static final int NODE_FIELD_NUMBER = 1;
private java.util.List node_;
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public java.util.List getNodeList() {
return node_;
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public java.util.List extends org.tensorflow.framework.NodeDefOrBuilder>
getNodeOrBuilderList() {
return node_;
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public int getNodeCount() {
return node_.size();
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public org.tensorflow.framework.NodeDef getNode(int index) {
return node_.get(index);
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public org.tensorflow.framework.NodeDefOrBuilder getNodeOrBuilder(
int index) {
return node_.get(index);
}
public static final int VERSIONS_FIELD_NUMBER = 4;
private org.tensorflow.framework.VersionDef versions_;
/**
*
* Compatibility versions of the graph. See core/public/version.h for version
* history. The GraphDef version is distinct from the TensorFlow version, and
* each release of TensorFlow will support a range of GraphDef versions.
*
*
* .tensorflow.VersionDef versions = 4;
*/
public boolean hasVersions() {
return versions_ != null;
}
/**
*
* Compatibility versions of the graph. See core/public/version.h for version
* history. The GraphDef version is distinct from the TensorFlow version, and
* each release of TensorFlow will support a range of GraphDef versions.
*
*
* .tensorflow.VersionDef versions = 4;
*/
public org.tensorflow.framework.VersionDef getVersions() {
return versions_ == null ? org.tensorflow.framework.VersionDef.getDefaultInstance() : versions_;
}
/**
*
* Compatibility versions of the graph. See core/public/version.h for version
* history. The GraphDef version is distinct from the TensorFlow version, and
* each release of TensorFlow will support a range of GraphDef versions.
*
*
* .tensorflow.VersionDef versions = 4;
*/
public org.tensorflow.framework.VersionDefOrBuilder getVersionsOrBuilder() {
return getVersions();
}
public static final int VERSION_FIELD_NUMBER = 3;
private int version_;
/**
*
* Deprecated single version field; use versions above instead. Since all
* GraphDef changes before "versions" was introduced were forward
* compatible, this field is entirely ignored.
*
*
* int32 version = 3 [deprecated = true];
*/
@java.lang.Deprecated public int getVersion() {
return version_;
}
public static final int LIBRARY_FIELD_NUMBER = 2;
private org.tensorflow.framework.FunctionDefLibrary library_;
/**
*
* EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
* "library" provides user-defined functions.
* Naming:
* * library.function.name are in a flat namespace.
* NOTE: We may need to change it to be hierarchical to support
* different orgs. E.g.,
* { "/google/nn", { ... }},
* { "/google/vision", { ... }}
* { "/org_foo/module_bar", { ... }}
* map<string, FunctionDefLib> named_lib;
* * If node[i].op is the name of one function in "library",
* node[i] is deemed as a function call. Otherwise, node[i].op
* must be a primitive operation supported by the runtime.
* Function call semantics:
* * The callee may start execution as soon as some of its inputs
* are ready. The caller may want to use Tuple() mechanism to
* ensure all inputs are ready in the same time.
* * The consumer of return values may start executing as soon as
* the return values the consumer depends on are ready. The
* consumer may want to use Tuple() mechanism to ensure the
* consumer does not start until all return values of the callee
* function are ready.
*
*
* .tensorflow.FunctionDefLibrary library = 2;
*/
public boolean hasLibrary() {
return library_ != null;
}
/**
*
* EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
* "library" provides user-defined functions.
* Naming:
* * library.function.name are in a flat namespace.
* NOTE: We may need to change it to be hierarchical to support
* different orgs. E.g.,
* { "/google/nn", { ... }},
* { "/google/vision", { ... }}
* { "/org_foo/module_bar", { ... }}
* map<string, FunctionDefLib> named_lib;
* * If node[i].op is the name of one function in "library",
* node[i] is deemed as a function call. Otherwise, node[i].op
* must be a primitive operation supported by the runtime.
* Function call semantics:
* * The callee may start execution as soon as some of its inputs
* are ready. The caller may want to use Tuple() mechanism to
* ensure all inputs are ready in the same time.
* * The consumer of return values may start executing as soon as
* the return values the consumer depends on are ready. The
* consumer may want to use Tuple() mechanism to ensure the
* consumer does not start until all return values of the callee
* function are ready.
*
*
* .tensorflow.FunctionDefLibrary library = 2;
*/
public org.tensorflow.framework.FunctionDefLibrary getLibrary() {
return library_ == null ? org.tensorflow.framework.FunctionDefLibrary.getDefaultInstance() : library_;
}
/**
*
* EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
* "library" provides user-defined functions.
* Naming:
* * library.function.name are in a flat namespace.
* NOTE: We may need to change it to be hierarchical to support
* different orgs. E.g.,
* { "/google/nn", { ... }},
* { "/google/vision", { ... }}
* { "/org_foo/module_bar", { ... }}
* map<string, FunctionDefLib> named_lib;
* * If node[i].op is the name of one function in "library",
* node[i] is deemed as a function call. Otherwise, node[i].op
* must be a primitive operation supported by the runtime.
* Function call semantics:
* * The callee may start execution as soon as some of its inputs
* are ready. The caller may want to use Tuple() mechanism to
* ensure all inputs are ready in the same time.
* * The consumer of return values may start executing as soon as
* the return values the consumer depends on are ready. The
* consumer may want to use Tuple() mechanism to ensure the
* consumer does not start until all return values of the callee
* function are ready.
*
*
* .tensorflow.FunctionDefLibrary library = 2;
*/
public org.tensorflow.framework.FunctionDefLibraryOrBuilder getLibraryOrBuilder() {
return getLibrary();
}
private byte memoizedIsInitialized = -1;
public final boolean isInitialized() {
byte isInitialized = memoizedIsInitialized;
if (isInitialized == 1) return true;
if (isInitialized == 0) return false;
memoizedIsInitialized = 1;
return true;
}
public void writeTo(com.google.protobuf.CodedOutputStream output)
throws java.io.IOException {
for (int i = 0; i < node_.size(); i++) {
output.writeMessage(1, node_.get(i));
}
if (library_ != null) {
output.writeMessage(2, getLibrary());
}
if (version_ != 0) {
output.writeInt32(3, version_);
}
if (versions_ != null) {
output.writeMessage(4, getVersions());
}
unknownFields.writeTo(output);
}
public int getSerializedSize() {
int size = memoizedSize;
if (size != -1) return size;
size = 0;
for (int i = 0; i < node_.size(); i++) {
size += com.google.protobuf.CodedOutputStream
.computeMessageSize(1, node_.get(i));
}
if (library_ != null) {
size += com.google.protobuf.CodedOutputStream
.computeMessageSize(2, getLibrary());
}
if (version_ != 0) {
size += com.google.protobuf.CodedOutputStream
.computeInt32Size(3, version_);
}
if (versions_ != null) {
size += com.google.protobuf.CodedOutputStream
.computeMessageSize(4, getVersions());
}
size += unknownFields.getSerializedSize();
memoizedSize = size;
return size;
}
@java.lang.Override
public boolean equals(final java.lang.Object obj) {
if (obj == this) {
return true;
}
if (!(obj instanceof org.tensorflow.framework.GraphDef)) {
return super.equals(obj);
}
org.tensorflow.framework.GraphDef other = (org.tensorflow.framework.GraphDef) obj;
boolean result = true;
result = result && getNodeList()
.equals(other.getNodeList());
result = result && (hasVersions() == other.hasVersions());
if (hasVersions()) {
result = result && getVersions()
.equals(other.getVersions());
}
result = result && (getVersion()
== other.getVersion());
result = result && (hasLibrary() == other.hasLibrary());
if (hasLibrary()) {
result = result && getLibrary()
.equals(other.getLibrary());
}
result = result && unknownFields.equals(other.unknownFields);
return result;
}
@java.lang.Override
public int hashCode() {
if (memoizedHashCode != 0) {
return memoizedHashCode;
}
int hash = 41;
hash = (19 * hash) + getDescriptor().hashCode();
if (getNodeCount() > 0) {
hash = (37 * hash) + NODE_FIELD_NUMBER;
hash = (53 * hash) + getNodeList().hashCode();
}
if (hasVersions()) {
hash = (37 * hash) + VERSIONS_FIELD_NUMBER;
hash = (53 * hash) + getVersions().hashCode();
}
hash = (37 * hash) + VERSION_FIELD_NUMBER;
hash = (53 * hash) + getVersion();
if (hasLibrary()) {
hash = (37 * hash) + LIBRARY_FIELD_NUMBER;
hash = (53 * hash) + getLibrary().hashCode();
}
hash = (29 * hash) + unknownFields.hashCode();
memoizedHashCode = hash;
return hash;
}
public static org.tensorflow.framework.GraphDef parseFrom(
java.nio.ByteBuffer data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.framework.GraphDef parseFrom(
java.nio.ByteBuffer data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.framework.GraphDef parseFrom(
com.google.protobuf.ByteString data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.framework.GraphDef parseFrom(
com.google.protobuf.ByteString data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.framework.GraphDef parseFrom(byte[] data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.framework.GraphDef parseFrom(
byte[] data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.framework.GraphDef parseFrom(java.io.InputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static org.tensorflow.framework.GraphDef parseFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
public static org.tensorflow.framework.GraphDef parseDelimitedFrom(java.io.InputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input);
}
public static org.tensorflow.framework.GraphDef parseDelimitedFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input, extensionRegistry);
}
public static org.tensorflow.framework.GraphDef parseFrom(
com.google.protobuf.CodedInputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static org.tensorflow.framework.GraphDef parseFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
public Builder newBuilderForType() { return newBuilder(); }
public static Builder newBuilder() {
return DEFAULT_INSTANCE.toBuilder();
}
public static Builder newBuilder(org.tensorflow.framework.GraphDef prototype) {
return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype);
}
public Builder toBuilder() {
return this == DEFAULT_INSTANCE
? new Builder() : new Builder().mergeFrom(this);
}
@java.lang.Override
protected Builder newBuilderForType(
com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
Builder builder = new Builder(parent);
return builder;
}
/**
*
* Represents the graph of operations
*
*
* Protobuf type {@code tensorflow.GraphDef}
*/
public static final class Builder extends
com.google.protobuf.GeneratedMessageV3.Builder implements
// @@protoc_insertion_point(builder_implements:tensorflow.GraphDef)
org.tensorflow.framework.GraphDefOrBuilder {
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return org.tensorflow.framework.GraphProtos.internal_static_tensorflow_GraphDef_descriptor;
}
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return org.tensorflow.framework.GraphProtos.internal_static_tensorflow_GraphDef_fieldAccessorTable
.ensureFieldAccessorsInitialized(
org.tensorflow.framework.GraphDef.class, org.tensorflow.framework.GraphDef.Builder.class);
}
// Construct using org.tensorflow.framework.GraphDef.newBuilder()
private Builder() {
maybeForceBuilderInitialization();
}
private Builder(
com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
super(parent);
maybeForceBuilderInitialization();
}
private void maybeForceBuilderInitialization() {
if (com.google.protobuf.GeneratedMessageV3
.alwaysUseFieldBuilders) {
getNodeFieldBuilder();
}
}
public Builder clear() {
super.clear();
if (nodeBuilder_ == null) {
node_ = java.util.Collections.emptyList();
bitField0_ = (bitField0_ & ~0x00000001);
} else {
nodeBuilder_.clear();
}
if (versionsBuilder_ == null) {
versions_ = null;
} else {
versions_ = null;
versionsBuilder_ = null;
}
version_ = 0;
if (libraryBuilder_ == null) {
library_ = null;
} else {
library_ = null;
libraryBuilder_ = null;
}
return this;
}
public com.google.protobuf.Descriptors.Descriptor
getDescriptorForType() {
return org.tensorflow.framework.GraphProtos.internal_static_tensorflow_GraphDef_descriptor;
}
public org.tensorflow.framework.GraphDef getDefaultInstanceForType() {
return org.tensorflow.framework.GraphDef.getDefaultInstance();
}
public org.tensorflow.framework.GraphDef build() {
org.tensorflow.framework.GraphDef result = buildPartial();
if (!result.isInitialized()) {
throw newUninitializedMessageException(result);
}
return result;
}
public org.tensorflow.framework.GraphDef buildPartial() {
org.tensorflow.framework.GraphDef result = new org.tensorflow.framework.GraphDef(this);
int from_bitField0_ = bitField0_;
int to_bitField0_ = 0;
if (nodeBuilder_ == null) {
if (((bitField0_ & 0x00000001) == 0x00000001)) {
node_ = java.util.Collections.unmodifiableList(node_);
bitField0_ = (bitField0_ & ~0x00000001);
}
result.node_ = node_;
} else {
result.node_ = nodeBuilder_.build();
}
if (versionsBuilder_ == null) {
result.versions_ = versions_;
} else {
result.versions_ = versionsBuilder_.build();
}
result.version_ = version_;
if (libraryBuilder_ == null) {
result.library_ = library_;
} else {
result.library_ = libraryBuilder_.build();
}
result.bitField0_ = to_bitField0_;
onBuilt();
return result;
}
public Builder clone() {
return (Builder) super.clone();
}
public Builder setField(
com.google.protobuf.Descriptors.FieldDescriptor field,
java.lang.Object value) {
return (Builder) super.setField(field, value);
}
public Builder clearField(
com.google.protobuf.Descriptors.FieldDescriptor field) {
return (Builder) super.clearField(field);
}
public Builder clearOneof(
com.google.protobuf.Descriptors.OneofDescriptor oneof) {
return (Builder) super.clearOneof(oneof);
}
public Builder setRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field,
int index, java.lang.Object value) {
return (Builder) super.setRepeatedField(field, index, value);
}
public Builder addRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field,
java.lang.Object value) {
return (Builder) super.addRepeatedField(field, value);
}
public Builder mergeFrom(com.google.protobuf.Message other) {
if (other instanceof org.tensorflow.framework.GraphDef) {
return mergeFrom((org.tensorflow.framework.GraphDef)other);
} else {
super.mergeFrom(other);
return this;
}
}
public Builder mergeFrom(org.tensorflow.framework.GraphDef other) {
if (other == org.tensorflow.framework.GraphDef.getDefaultInstance()) return this;
if (nodeBuilder_ == null) {
if (!other.node_.isEmpty()) {
if (node_.isEmpty()) {
node_ = other.node_;
bitField0_ = (bitField0_ & ~0x00000001);
} else {
ensureNodeIsMutable();
node_.addAll(other.node_);
}
onChanged();
}
} else {
if (!other.node_.isEmpty()) {
if (nodeBuilder_.isEmpty()) {
nodeBuilder_.dispose();
nodeBuilder_ = null;
node_ = other.node_;
bitField0_ = (bitField0_ & ~0x00000001);
nodeBuilder_ =
com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ?
getNodeFieldBuilder() : null;
} else {
nodeBuilder_.addAllMessages(other.node_);
}
}
}
if (other.hasVersions()) {
mergeVersions(other.getVersions());
}
if (other.getVersion() != 0) {
setVersion(other.getVersion());
}
if (other.hasLibrary()) {
mergeLibrary(other.getLibrary());
}
this.mergeUnknownFields(other.unknownFields);
onChanged();
return this;
}
public final boolean isInitialized() {
return true;
}
public Builder mergeFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
org.tensorflow.framework.GraphDef parsedMessage = null;
try {
parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry);
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
parsedMessage = (org.tensorflow.framework.GraphDef) e.getUnfinishedMessage();
throw e.unwrapIOException();
} finally {
if (parsedMessage != null) {
mergeFrom(parsedMessage);
}
}
return this;
}
private int bitField0_;
private java.util.List node_ =
java.util.Collections.emptyList();
private void ensureNodeIsMutable() {
if (!((bitField0_ & 0x00000001) == 0x00000001)) {
node_ = new java.util.ArrayList(node_);
bitField0_ |= 0x00000001;
}
}
private com.google.protobuf.RepeatedFieldBuilderV3<
org.tensorflow.framework.NodeDef, org.tensorflow.framework.NodeDef.Builder, org.tensorflow.framework.NodeDefOrBuilder> nodeBuilder_;
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public java.util.List getNodeList() {
if (nodeBuilder_ == null) {
return java.util.Collections.unmodifiableList(node_);
} else {
return nodeBuilder_.getMessageList();
}
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public int getNodeCount() {
if (nodeBuilder_ == null) {
return node_.size();
} else {
return nodeBuilder_.getCount();
}
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public org.tensorflow.framework.NodeDef getNode(int index) {
if (nodeBuilder_ == null) {
return node_.get(index);
} else {
return nodeBuilder_.getMessage(index);
}
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public Builder setNode(
int index, org.tensorflow.framework.NodeDef value) {
if (nodeBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
ensureNodeIsMutable();
node_.set(index, value);
onChanged();
} else {
nodeBuilder_.setMessage(index, value);
}
return this;
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public Builder setNode(
int index, org.tensorflow.framework.NodeDef.Builder builderForValue) {
if (nodeBuilder_ == null) {
ensureNodeIsMutable();
node_.set(index, builderForValue.build());
onChanged();
} else {
nodeBuilder_.setMessage(index, builderForValue.build());
}
return this;
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public Builder addNode(org.tensorflow.framework.NodeDef value) {
if (nodeBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
ensureNodeIsMutable();
node_.add(value);
onChanged();
} else {
nodeBuilder_.addMessage(value);
}
return this;
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public Builder addNode(
int index, org.tensorflow.framework.NodeDef value) {
if (nodeBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
ensureNodeIsMutable();
node_.add(index, value);
onChanged();
} else {
nodeBuilder_.addMessage(index, value);
}
return this;
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public Builder addNode(
org.tensorflow.framework.NodeDef.Builder builderForValue) {
if (nodeBuilder_ == null) {
ensureNodeIsMutable();
node_.add(builderForValue.build());
onChanged();
} else {
nodeBuilder_.addMessage(builderForValue.build());
}
return this;
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public Builder addNode(
int index, org.tensorflow.framework.NodeDef.Builder builderForValue) {
if (nodeBuilder_ == null) {
ensureNodeIsMutable();
node_.add(index, builderForValue.build());
onChanged();
} else {
nodeBuilder_.addMessage(index, builderForValue.build());
}
return this;
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public Builder addAllNode(
java.lang.Iterable extends org.tensorflow.framework.NodeDef> values) {
if (nodeBuilder_ == null) {
ensureNodeIsMutable();
com.google.protobuf.AbstractMessageLite.Builder.addAll(
values, node_);
onChanged();
} else {
nodeBuilder_.addAllMessages(values);
}
return this;
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public Builder clearNode() {
if (nodeBuilder_ == null) {
node_ = java.util.Collections.emptyList();
bitField0_ = (bitField0_ & ~0x00000001);
onChanged();
} else {
nodeBuilder_.clear();
}
return this;
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public Builder removeNode(int index) {
if (nodeBuilder_ == null) {
ensureNodeIsMutable();
node_.remove(index);
onChanged();
} else {
nodeBuilder_.remove(index);
}
return this;
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public org.tensorflow.framework.NodeDef.Builder getNodeBuilder(
int index) {
return getNodeFieldBuilder().getBuilder(index);
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public org.tensorflow.framework.NodeDefOrBuilder getNodeOrBuilder(
int index) {
if (nodeBuilder_ == null) {
return node_.get(index); } else {
return nodeBuilder_.getMessageOrBuilder(index);
}
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public java.util.List extends org.tensorflow.framework.NodeDefOrBuilder>
getNodeOrBuilderList() {
if (nodeBuilder_ != null) {
return nodeBuilder_.getMessageOrBuilderList();
} else {
return java.util.Collections.unmodifiableList(node_);
}
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public org.tensorflow.framework.NodeDef.Builder addNodeBuilder() {
return getNodeFieldBuilder().addBuilder(
org.tensorflow.framework.NodeDef.getDefaultInstance());
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public org.tensorflow.framework.NodeDef.Builder addNodeBuilder(
int index) {
return getNodeFieldBuilder().addBuilder(
index, org.tensorflow.framework.NodeDef.getDefaultInstance());
}
/**
* repeated .tensorflow.NodeDef node = 1;
*/
public java.util.List
getNodeBuilderList() {
return getNodeFieldBuilder().getBuilderList();
}
private com.google.protobuf.RepeatedFieldBuilderV3<
org.tensorflow.framework.NodeDef, org.tensorflow.framework.NodeDef.Builder, org.tensorflow.framework.NodeDefOrBuilder>
getNodeFieldBuilder() {
if (nodeBuilder_ == null) {
nodeBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3<
org.tensorflow.framework.NodeDef, org.tensorflow.framework.NodeDef.Builder, org.tensorflow.framework.NodeDefOrBuilder>(
node_,
((bitField0_ & 0x00000001) == 0x00000001),
getParentForChildren(),
isClean());
node_ = null;
}
return nodeBuilder_;
}
private org.tensorflow.framework.VersionDef versions_ = null;
private com.google.protobuf.SingleFieldBuilderV3<
org.tensorflow.framework.VersionDef, org.tensorflow.framework.VersionDef.Builder, org.tensorflow.framework.VersionDefOrBuilder> versionsBuilder_;
/**
*
* Compatibility versions of the graph. See core/public/version.h for version
* history. The GraphDef version is distinct from the TensorFlow version, and
* each release of TensorFlow will support a range of GraphDef versions.
*
*
* .tensorflow.VersionDef versions = 4;
*/
public boolean hasVersions() {
return versionsBuilder_ != null || versions_ != null;
}
/**
*
* Compatibility versions of the graph. See core/public/version.h for version
* history. The GraphDef version is distinct from the TensorFlow version, and
* each release of TensorFlow will support a range of GraphDef versions.
*
*
* .tensorflow.VersionDef versions = 4;
*/
public org.tensorflow.framework.VersionDef getVersions() {
if (versionsBuilder_ == null) {
return versions_ == null ? org.tensorflow.framework.VersionDef.getDefaultInstance() : versions_;
} else {
return versionsBuilder_.getMessage();
}
}
/**
*
* Compatibility versions of the graph. See core/public/version.h for version
* history. The GraphDef version is distinct from the TensorFlow version, and
* each release of TensorFlow will support a range of GraphDef versions.
*
*
* .tensorflow.VersionDef versions = 4;
*/
public Builder setVersions(org.tensorflow.framework.VersionDef value) {
if (versionsBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
versions_ = value;
onChanged();
} else {
versionsBuilder_.setMessage(value);
}
return this;
}
/**
*
* Compatibility versions of the graph. See core/public/version.h for version
* history. The GraphDef version is distinct from the TensorFlow version, and
* each release of TensorFlow will support a range of GraphDef versions.
*
*
* .tensorflow.VersionDef versions = 4;
*/
public Builder setVersions(
org.tensorflow.framework.VersionDef.Builder builderForValue) {
if (versionsBuilder_ == null) {
versions_ = builderForValue.build();
onChanged();
} else {
versionsBuilder_.setMessage(builderForValue.build());
}
return this;
}
/**
*
* Compatibility versions of the graph. See core/public/version.h for version
* history. The GraphDef version is distinct from the TensorFlow version, and
* each release of TensorFlow will support a range of GraphDef versions.
*
*
* .tensorflow.VersionDef versions = 4;
*/
public Builder mergeVersions(org.tensorflow.framework.VersionDef value) {
if (versionsBuilder_ == null) {
if (versions_ != null) {
versions_ =
org.tensorflow.framework.VersionDef.newBuilder(versions_).mergeFrom(value).buildPartial();
} else {
versions_ = value;
}
onChanged();
} else {
versionsBuilder_.mergeFrom(value);
}
return this;
}
/**
*
* Compatibility versions of the graph. See core/public/version.h for version
* history. The GraphDef version is distinct from the TensorFlow version, and
* each release of TensorFlow will support a range of GraphDef versions.
*
*
* .tensorflow.VersionDef versions = 4;
*/
public Builder clearVersions() {
if (versionsBuilder_ == null) {
versions_ = null;
onChanged();
} else {
versions_ = null;
versionsBuilder_ = null;
}
return this;
}
/**
*
* Compatibility versions of the graph. See core/public/version.h for version
* history. The GraphDef version is distinct from the TensorFlow version, and
* each release of TensorFlow will support a range of GraphDef versions.
*
*
* .tensorflow.VersionDef versions = 4;
*/
public org.tensorflow.framework.VersionDef.Builder getVersionsBuilder() {
onChanged();
return getVersionsFieldBuilder().getBuilder();
}
/**
*
* Compatibility versions of the graph. See core/public/version.h for version
* history. The GraphDef version is distinct from the TensorFlow version, and
* each release of TensorFlow will support a range of GraphDef versions.
*
*
* .tensorflow.VersionDef versions = 4;
*/
public org.tensorflow.framework.VersionDefOrBuilder getVersionsOrBuilder() {
if (versionsBuilder_ != null) {
return versionsBuilder_.getMessageOrBuilder();
} else {
return versions_ == null ?
org.tensorflow.framework.VersionDef.getDefaultInstance() : versions_;
}
}
/**
*
* Compatibility versions of the graph. See core/public/version.h for version
* history. The GraphDef version is distinct from the TensorFlow version, and
* each release of TensorFlow will support a range of GraphDef versions.
*
*
* .tensorflow.VersionDef versions = 4;
*/
private com.google.protobuf.SingleFieldBuilderV3<
org.tensorflow.framework.VersionDef, org.tensorflow.framework.VersionDef.Builder, org.tensorflow.framework.VersionDefOrBuilder>
getVersionsFieldBuilder() {
if (versionsBuilder_ == null) {
versionsBuilder_ = new com.google.protobuf.SingleFieldBuilderV3<
org.tensorflow.framework.VersionDef, org.tensorflow.framework.VersionDef.Builder, org.tensorflow.framework.VersionDefOrBuilder>(
getVersions(),
getParentForChildren(),
isClean());
versions_ = null;
}
return versionsBuilder_;
}
private int version_ ;
/**
*
* Deprecated single version field; use versions above instead. Since all
* GraphDef changes before "versions" was introduced were forward
* compatible, this field is entirely ignored.
*
*
* int32 version = 3 [deprecated = true];
*/
@java.lang.Deprecated public int getVersion() {
return version_;
}
/**
*
* Deprecated single version field; use versions above instead. Since all
* GraphDef changes before "versions" was introduced were forward
* compatible, this field is entirely ignored.
*
*
* int32 version = 3 [deprecated = true];
*/
@java.lang.Deprecated public Builder setVersion(int value) {
version_ = value;
onChanged();
return this;
}
/**
*
* Deprecated single version field; use versions above instead. Since all
* GraphDef changes before "versions" was introduced were forward
* compatible, this field is entirely ignored.
*
*
* int32 version = 3 [deprecated = true];
*/
@java.lang.Deprecated public Builder clearVersion() {
version_ = 0;
onChanged();
return this;
}
private org.tensorflow.framework.FunctionDefLibrary library_ = null;
private com.google.protobuf.SingleFieldBuilderV3<
org.tensorflow.framework.FunctionDefLibrary, org.tensorflow.framework.FunctionDefLibrary.Builder, org.tensorflow.framework.FunctionDefLibraryOrBuilder> libraryBuilder_;
/**
*
* EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
* "library" provides user-defined functions.
* Naming:
* * library.function.name are in a flat namespace.
* NOTE: We may need to change it to be hierarchical to support
* different orgs. E.g.,
* { "/google/nn", { ... }},
* { "/google/vision", { ... }}
* { "/org_foo/module_bar", { ... }}
* map<string, FunctionDefLib> named_lib;
* * If node[i].op is the name of one function in "library",
* node[i] is deemed as a function call. Otherwise, node[i].op
* must be a primitive operation supported by the runtime.
* Function call semantics:
* * The callee may start execution as soon as some of its inputs
* are ready. The caller may want to use Tuple() mechanism to
* ensure all inputs are ready in the same time.
* * The consumer of return values may start executing as soon as
* the return values the consumer depends on are ready. The
* consumer may want to use Tuple() mechanism to ensure the
* consumer does not start until all return values of the callee
* function are ready.
*
*
* .tensorflow.FunctionDefLibrary library = 2;
*/
public boolean hasLibrary() {
return libraryBuilder_ != null || library_ != null;
}
/**
*
* EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
* "library" provides user-defined functions.
* Naming:
* * library.function.name are in a flat namespace.
* NOTE: We may need to change it to be hierarchical to support
* different orgs. E.g.,
* { "/google/nn", { ... }},
* { "/google/vision", { ... }}
* { "/org_foo/module_bar", { ... }}
* map<string, FunctionDefLib> named_lib;
* * If node[i].op is the name of one function in "library",
* node[i] is deemed as a function call. Otherwise, node[i].op
* must be a primitive operation supported by the runtime.
* Function call semantics:
* * The callee may start execution as soon as some of its inputs
* are ready. The caller may want to use Tuple() mechanism to
* ensure all inputs are ready in the same time.
* * The consumer of return values may start executing as soon as
* the return values the consumer depends on are ready. The
* consumer may want to use Tuple() mechanism to ensure the
* consumer does not start until all return values of the callee
* function are ready.
*
*
* .tensorflow.FunctionDefLibrary library = 2;
*/
public org.tensorflow.framework.FunctionDefLibrary getLibrary() {
if (libraryBuilder_ == null) {
return library_ == null ? org.tensorflow.framework.FunctionDefLibrary.getDefaultInstance() : library_;
} else {
return libraryBuilder_.getMessage();
}
}
/**
*
* EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
* "library" provides user-defined functions.
* Naming:
* * library.function.name are in a flat namespace.
* NOTE: We may need to change it to be hierarchical to support
* different orgs. E.g.,
* { "/google/nn", { ... }},
* { "/google/vision", { ... }}
* { "/org_foo/module_bar", { ... }}
* map<string, FunctionDefLib> named_lib;
* * If node[i].op is the name of one function in "library",
* node[i] is deemed as a function call. Otherwise, node[i].op
* must be a primitive operation supported by the runtime.
* Function call semantics:
* * The callee may start execution as soon as some of its inputs
* are ready. The caller may want to use Tuple() mechanism to
* ensure all inputs are ready in the same time.
* * The consumer of return values may start executing as soon as
* the return values the consumer depends on are ready. The
* consumer may want to use Tuple() mechanism to ensure the
* consumer does not start until all return values of the callee
* function are ready.
*
*
* .tensorflow.FunctionDefLibrary library = 2;
*/
public Builder setLibrary(org.tensorflow.framework.FunctionDefLibrary value) {
if (libraryBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
library_ = value;
onChanged();
} else {
libraryBuilder_.setMessage(value);
}
return this;
}
/**
*
* EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
* "library" provides user-defined functions.
* Naming:
* * library.function.name are in a flat namespace.
* NOTE: We may need to change it to be hierarchical to support
* different orgs. E.g.,
* { "/google/nn", { ... }},
* { "/google/vision", { ... }}
* { "/org_foo/module_bar", { ... }}
* map<string, FunctionDefLib> named_lib;
* * If node[i].op is the name of one function in "library",
* node[i] is deemed as a function call. Otherwise, node[i].op
* must be a primitive operation supported by the runtime.
* Function call semantics:
* * The callee may start execution as soon as some of its inputs
* are ready. The caller may want to use Tuple() mechanism to
* ensure all inputs are ready in the same time.
* * The consumer of return values may start executing as soon as
* the return values the consumer depends on are ready. The
* consumer may want to use Tuple() mechanism to ensure the
* consumer does not start until all return values of the callee
* function are ready.
*
*
* .tensorflow.FunctionDefLibrary library = 2;
*/
public Builder setLibrary(
org.tensorflow.framework.FunctionDefLibrary.Builder builderForValue) {
if (libraryBuilder_ == null) {
library_ = builderForValue.build();
onChanged();
} else {
libraryBuilder_.setMessage(builderForValue.build());
}
return this;
}
/**
*
* EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
* "library" provides user-defined functions.
* Naming:
* * library.function.name are in a flat namespace.
* NOTE: We may need to change it to be hierarchical to support
* different orgs. E.g.,
* { "/google/nn", { ... }},
* { "/google/vision", { ... }}
* { "/org_foo/module_bar", { ... }}
* map<string, FunctionDefLib> named_lib;
* * If node[i].op is the name of one function in "library",
* node[i] is deemed as a function call. Otherwise, node[i].op
* must be a primitive operation supported by the runtime.
* Function call semantics:
* * The callee may start execution as soon as some of its inputs
* are ready. The caller may want to use Tuple() mechanism to
* ensure all inputs are ready in the same time.
* * The consumer of return values may start executing as soon as
* the return values the consumer depends on are ready. The
* consumer may want to use Tuple() mechanism to ensure the
* consumer does not start until all return values of the callee
* function are ready.
*
*
* .tensorflow.FunctionDefLibrary library = 2;
*/
public Builder mergeLibrary(org.tensorflow.framework.FunctionDefLibrary value) {
if (libraryBuilder_ == null) {
if (library_ != null) {
library_ =
org.tensorflow.framework.FunctionDefLibrary.newBuilder(library_).mergeFrom(value).buildPartial();
} else {
library_ = value;
}
onChanged();
} else {
libraryBuilder_.mergeFrom(value);
}
return this;
}
/**
*
* EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
* "library" provides user-defined functions.
* Naming:
* * library.function.name are in a flat namespace.
* NOTE: We may need to change it to be hierarchical to support
* different orgs. E.g.,
* { "/google/nn", { ... }},
* { "/google/vision", { ... }}
* { "/org_foo/module_bar", { ... }}
* map<string, FunctionDefLib> named_lib;
* * If node[i].op is the name of one function in "library",
* node[i] is deemed as a function call. Otherwise, node[i].op
* must be a primitive operation supported by the runtime.
* Function call semantics:
* * The callee may start execution as soon as some of its inputs
* are ready. The caller may want to use Tuple() mechanism to
* ensure all inputs are ready in the same time.
* * The consumer of return values may start executing as soon as
* the return values the consumer depends on are ready. The
* consumer may want to use Tuple() mechanism to ensure the
* consumer does not start until all return values of the callee
* function are ready.
*
*
* .tensorflow.FunctionDefLibrary library = 2;
*/
public Builder clearLibrary() {
if (libraryBuilder_ == null) {
library_ = null;
onChanged();
} else {
library_ = null;
libraryBuilder_ = null;
}
return this;
}
/**
*
* EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
* "library" provides user-defined functions.
* Naming:
* * library.function.name are in a flat namespace.
* NOTE: We may need to change it to be hierarchical to support
* different orgs. E.g.,
* { "/google/nn", { ... }},
* { "/google/vision", { ... }}
* { "/org_foo/module_bar", { ... }}
* map<string, FunctionDefLib> named_lib;
* * If node[i].op is the name of one function in "library",
* node[i] is deemed as a function call. Otherwise, node[i].op
* must be a primitive operation supported by the runtime.
* Function call semantics:
* * The callee may start execution as soon as some of its inputs
* are ready. The caller may want to use Tuple() mechanism to
* ensure all inputs are ready in the same time.
* * The consumer of return values may start executing as soon as
* the return values the consumer depends on are ready. The
* consumer may want to use Tuple() mechanism to ensure the
* consumer does not start until all return values of the callee
* function are ready.
*
*
* .tensorflow.FunctionDefLibrary library = 2;
*/
public org.tensorflow.framework.FunctionDefLibrary.Builder getLibraryBuilder() {
onChanged();
return getLibraryFieldBuilder().getBuilder();
}
/**
*
* EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
* "library" provides user-defined functions.
* Naming:
* * library.function.name are in a flat namespace.
* NOTE: We may need to change it to be hierarchical to support
* different orgs. E.g.,
* { "/google/nn", { ... }},
* { "/google/vision", { ... }}
* { "/org_foo/module_bar", { ... }}
* map<string, FunctionDefLib> named_lib;
* * If node[i].op is the name of one function in "library",
* node[i] is deemed as a function call. Otherwise, node[i].op
* must be a primitive operation supported by the runtime.
* Function call semantics:
* * The callee may start execution as soon as some of its inputs
* are ready. The caller may want to use Tuple() mechanism to
* ensure all inputs are ready in the same time.
* * The consumer of return values may start executing as soon as
* the return values the consumer depends on are ready. The
* consumer may want to use Tuple() mechanism to ensure the
* consumer does not start until all return values of the callee
* function are ready.
*
*
* .tensorflow.FunctionDefLibrary library = 2;
*/
public org.tensorflow.framework.FunctionDefLibraryOrBuilder getLibraryOrBuilder() {
if (libraryBuilder_ != null) {
return libraryBuilder_.getMessageOrBuilder();
} else {
return library_ == null ?
org.tensorflow.framework.FunctionDefLibrary.getDefaultInstance() : library_;
}
}
/**
*
* EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
* "library" provides user-defined functions.
* Naming:
* * library.function.name are in a flat namespace.
* NOTE: We may need to change it to be hierarchical to support
* different orgs. E.g.,
* { "/google/nn", { ... }},
* { "/google/vision", { ... }}
* { "/org_foo/module_bar", { ... }}
* map<string, FunctionDefLib> named_lib;
* * If node[i].op is the name of one function in "library",
* node[i] is deemed as a function call. Otherwise, node[i].op
* must be a primitive operation supported by the runtime.
* Function call semantics:
* * The callee may start execution as soon as some of its inputs
* are ready. The caller may want to use Tuple() mechanism to
* ensure all inputs are ready in the same time.
* * The consumer of return values may start executing as soon as
* the return values the consumer depends on are ready. The
* consumer may want to use Tuple() mechanism to ensure the
* consumer does not start until all return values of the callee
* function are ready.
*
*
* .tensorflow.FunctionDefLibrary library = 2;
*/
private com.google.protobuf.SingleFieldBuilderV3<
org.tensorflow.framework.FunctionDefLibrary, org.tensorflow.framework.FunctionDefLibrary.Builder, org.tensorflow.framework.FunctionDefLibraryOrBuilder>
getLibraryFieldBuilder() {
if (libraryBuilder_ == null) {
libraryBuilder_ = new com.google.protobuf.SingleFieldBuilderV3<
org.tensorflow.framework.FunctionDefLibrary, org.tensorflow.framework.FunctionDefLibrary.Builder, org.tensorflow.framework.FunctionDefLibraryOrBuilder>(
getLibrary(),
getParentForChildren(),
isClean());
library_ = null;
}
return libraryBuilder_;
}
public final Builder setUnknownFields(
final com.google.protobuf.UnknownFieldSet unknownFields) {
return super.setUnknownFieldsProto3(unknownFields);
}
public final Builder mergeUnknownFields(
final com.google.protobuf.UnknownFieldSet unknownFields) {
return super.mergeUnknownFields(unknownFields);
}
// @@protoc_insertion_point(builder_scope:tensorflow.GraphDef)
}
// @@protoc_insertion_point(class_scope:tensorflow.GraphDef)
private static final org.tensorflow.framework.GraphDef DEFAULT_INSTANCE;
static {
DEFAULT_INSTANCE = new org.tensorflow.framework.GraphDef();
}
public static org.tensorflow.framework.GraphDef getDefaultInstance() {
return DEFAULT_INSTANCE;
}
private static final com.google.protobuf.Parser
PARSER = new com.google.protobuf.AbstractParser() {
public GraphDef parsePartialFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return new GraphDef(input, extensionRegistry);
}
};
public static com.google.protobuf.Parser parser() {
return PARSER;
}
@java.lang.Override
public com.google.protobuf.Parser getParserForType() {
return PARSER;
}
public org.tensorflow.framework.GraphDef getDefaultInstanceForType() {
return DEFAULT_INSTANCE;
}
}