org.tensorflow.framework.RewriterConfigOrBuilder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of proto Show documentation
Show all versions of proto Show documentation
Java API for TensorFlow protocol buffers.
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: tensorflow/core/protobuf/rewriter_config.proto
package org.tensorflow.framework;
public interface RewriterConfigOrBuilder extends
// @@protoc_insertion_point(interface_extends:tensorflow.RewriterConfig)
com.google.protobuf.MessageOrBuilder {
/**
*
* Optimize tensor layouts (default is ON)
* e.g. This will try to use NCHW layout on GPU which is faster.
*
*
* .tensorflow.RewriterConfig.Toggle layout_optimizer = 1;
*/
int getLayoutOptimizerValue();
/**
*
* Optimize tensor layouts (default is ON)
* e.g. This will try to use NCHW layout on GPU which is faster.
*
*
* .tensorflow.RewriterConfig.Toggle layout_optimizer = 1;
*/
org.tensorflow.framework.RewriterConfig.Toggle getLayoutOptimizer();
/**
*
* Fold constants (default is ON)
* Statically infer the value of tensors when possible, and materialize the
* result using constants.
*
*
* .tensorflow.RewriterConfig.Toggle constant_folding = 3;
*/
int getConstantFoldingValue();
/**
*
* Fold constants (default is ON)
* Statically infer the value of tensors when possible, and materialize the
* result using constants.
*
*
* .tensorflow.RewriterConfig.Toggle constant_folding = 3;
*/
org.tensorflow.framework.RewriterConfig.Toggle getConstantFolding();
/**
*
* Shape optimizations (default is ON)
* Simplify computations made on shapes.
*
*
* .tensorflow.RewriterConfig.Toggle shape_optimization = 13;
*/
int getShapeOptimizationValue();
/**
*
* Shape optimizations (default is ON)
* Simplify computations made on shapes.
*
*
* .tensorflow.RewriterConfig.Toggle shape_optimization = 13;
*/
org.tensorflow.framework.RewriterConfig.Toggle getShapeOptimization();
/**
*
* Remapping (default is ON)
* Remap subgraphs onto more efficient implementations.
*
*
* .tensorflow.RewriterConfig.Toggle remapping = 14;
*/
int getRemappingValue();
/**
*
* Remapping (default is ON)
* Remap subgraphs onto more efficient implementations.
*
*
* .tensorflow.RewriterConfig.Toggle remapping = 14;
*/
org.tensorflow.framework.RewriterConfig.Toggle getRemapping();
/**
*
* Arithmetic optimizations (default is ON)
* e.g. Simplify arithmetic ops; merge ops with same value (like constants).
*
*
* .tensorflow.RewriterConfig.Toggle arithmetic_optimization = 7;
*/
int getArithmeticOptimizationValue();
/**
*
* Arithmetic optimizations (default is ON)
* e.g. Simplify arithmetic ops; merge ops with same value (like constants).
*
*
* .tensorflow.RewriterConfig.Toggle arithmetic_optimization = 7;
*/
org.tensorflow.framework.RewriterConfig.Toggle getArithmeticOptimization();
/**
*
* Control dependency optimizations (default is ON).
* Remove redundant control dependencies, which may enable other optimization.
*
*
* .tensorflow.RewriterConfig.Toggle dependency_optimization = 8;
*/
int getDependencyOptimizationValue();
/**
*
* Control dependency optimizations (default is ON).
* Remove redundant control dependencies, which may enable other optimization.
*
*
* .tensorflow.RewriterConfig.Toggle dependency_optimization = 8;
*/
org.tensorflow.framework.RewriterConfig.Toggle getDependencyOptimization();
/**
*
* Loop optimizations (default is ON).
*
*
* .tensorflow.RewriterConfig.Toggle loop_optimization = 9;
*/
int getLoopOptimizationValue();
/**
*
* Loop optimizations (default is ON).
*
*
* .tensorflow.RewriterConfig.Toggle loop_optimization = 9;
*/
org.tensorflow.framework.RewriterConfig.Toggle getLoopOptimization();
/**
*
* Function optimizations (default is ON).
*
*
* .tensorflow.RewriterConfig.Toggle function_optimization = 10;
*/
int getFunctionOptimizationValue();
/**
*
* Function optimizations (default is ON).
*
*
* .tensorflow.RewriterConfig.Toggle function_optimization = 10;
*/
org.tensorflow.framework.RewriterConfig.Toggle getFunctionOptimization();
/**
*
* Strips debug-related nodes from the graph (off by default).
*
*
* .tensorflow.RewriterConfig.Toggle debug_stripper = 11;
*/
int getDebugStripperValue();
/**
*
* Strips debug-related nodes from the graph (off by default).
*
*
* .tensorflow.RewriterConfig.Toggle debug_stripper = 11;
*/
org.tensorflow.framework.RewriterConfig.Toggle getDebugStripper();
/**
*
* If true, don't remove unnecessary ops from the graph
*
*
* bool disable_model_pruning = 2;
*/
boolean getDisableModelPruning();
/**
*
* Try to allocate some independent Op outputs contiguously in order to
* merge or eliminate downstream Ops (off by default).
*
*
* .tensorflow.RewriterConfig.Toggle scoped_allocator_optimization = 15;
*/
int getScopedAllocatorOptimizationValue();
/**
*
* Try to allocate some independent Op outputs contiguously in order to
* merge or eliminate downstream Ops (off by default).
*
*
* .tensorflow.RewriterConfig.Toggle scoped_allocator_optimization = 15;
*/
org.tensorflow.framework.RewriterConfig.Toggle getScopedAllocatorOptimization();
/**
*
* Force small ops onto the CPU (default is OFF).
*
*
* .tensorflow.RewriterConfig.Toggle pin_to_host_optimization = 18;
*/
int getPinToHostOptimizationValue();
/**
*
* Force small ops onto the CPU (default is OFF).
*
*
* .tensorflow.RewriterConfig.Toggle pin_to_host_optimization = 18;
*/
org.tensorflow.framework.RewriterConfig.Toggle getPinToHostOptimization();
/**
*
* Enable the swap of kernel implementations based on the device placement
* (default is ON).
*
*
* .tensorflow.RewriterConfig.Toggle implementation_selector = 22;
*/
int getImplementationSelectorValue();
/**
*
* Enable the swap of kernel implementations based on the device placement
* (default is ON).
*
*
* .tensorflow.RewriterConfig.Toggle implementation_selector = 22;
*/
org.tensorflow.framework.RewriterConfig.Toggle getImplementationSelector();
/**
*
* Optimize data types (default is OFF).
* e.g., This will try to use float16 on GPU which is faster.
* Note that this can change the numerical stability of the graph and may
* require the use of loss scaling to maintain model convergence.
*
*
* .tensorflow.RewriterConfig.Toggle auto_mixed_precision = 23;
*/
int getAutoMixedPrecisionValue();
/**
*
* Optimize data types (default is OFF).
* e.g., This will try to use float16 on GPU which is faster.
* Note that this can change the numerical stability of the graph and may
* require the use of loss scaling to maintain model convergence.
*
*
* .tensorflow.RewriterConfig.Toggle auto_mixed_precision = 23;
*/
org.tensorflow.framework.RewriterConfig.Toggle getAutoMixedPrecision();
/**
*
* Disable the entire meta optimizer (off by default).
*
*
* bool disable_meta_optimizer = 19;
*/
boolean getDisableMetaOptimizer();
/**
*
* Controls how many times we run the optimizers in meta optimizer (default
* is once).
*
*
* .tensorflow.RewriterConfig.NumIterationsType meta_optimizer_iterations = 12;
*/
int getMetaOptimizerIterationsValue();
/**
*
* Controls how many times we run the optimizers in meta optimizer (default
* is once).
*
*
* .tensorflow.RewriterConfig.NumIterationsType meta_optimizer_iterations = 12;
*/
org.tensorflow.framework.RewriterConfig.NumIterationsType getMetaOptimizerIterations();
/**
*
* The minimum number of nodes in a graph to optimizer. For smaller graphs,
* optimization is skipped.
* 0 means the system picks an appropriate number.
* < 0 means do not skip optimization.
*
*
* int32 min_graph_nodes = 17;
*/
int getMinGraphNodes();
/**
*
* Configures memory optimization passes through the meta-optimizer. Has no
* effect on manually requested memory optimization passes in the optimizers
* field.
*
*
* .tensorflow.RewriterConfig.MemOptType memory_optimization = 4;
*/
int getMemoryOptimizationValue();
/**
*
* Configures memory optimization passes through the meta-optimizer. Has no
* effect on manually requested memory optimization passes in the optimizers
* field.
*
*
* .tensorflow.RewriterConfig.MemOptType memory_optimization = 4;
*/
org.tensorflow.framework.RewriterConfig.MemOptType getMemoryOptimization();
/**
*
* A node name scope for node names which are valid outputs of recompuations.
* Inputs to nodes that match this scope may be recomputed (subject either to
* manual annotation of those input nodes or to manual annotation and
* heuristics depending on memory_optimization), but the nodes themselves will
* not be recomputed. This matches any sub-scopes as well, meaning the scope
* can appear not just as a top-level scope. For example, if the value is
* "gradients/", the default, it will match node name "gradients/foo",
* "foo/gradients/bar", but not "foo_gradients/"
*
*
* string memory_optimizer_target_node_name_scope = 6;
*/
java.lang.String getMemoryOptimizerTargetNodeNameScope();
/**
*
* A node name scope for node names which are valid outputs of recompuations.
* Inputs to nodes that match this scope may be recomputed (subject either to
* manual annotation of those input nodes or to manual annotation and
* heuristics depending on memory_optimization), but the nodes themselves will
* not be recomputed. This matches any sub-scopes as well, meaning the scope
* can appear not just as a top-level scope. For example, if the value is
* "gradients/", the default, it will match node name "gradients/foo",
* "foo/gradients/bar", but not "foo_gradients/"
*
*
* string memory_optimizer_target_node_name_scope = 6;
*/
com.google.protobuf.ByteString
getMemoryOptimizerTargetNodeNameScopeBytes();
/**
*
* Maximum number of milliseconds to spend optimizing a single graph before
* timing out. If equal to 0 the system picks a default (currently 5 minutes).
* If less than 0 the optimizer will never time out.
*
*
* int64 meta_optimizer_timeout_ms = 20;
*/
long getMetaOptimizerTimeoutMs();
/**
*
* Configures AutoParallel optimization passes either through the
* meta-optimizer or when manually specified through the optimizers field.
*
*
* .tensorflow.AutoParallelOptions auto_parallel = 5;
*/
boolean hasAutoParallel();
/**
*
* Configures AutoParallel optimization passes either through the
* meta-optimizer or when manually specified through the optimizers field.
*
*
* .tensorflow.AutoParallelOptions auto_parallel = 5;
*/
org.tensorflow.framework.AutoParallelOptions getAutoParallel();
/**
*
* Configures AutoParallel optimization passes either through the
* meta-optimizer or when manually specified through the optimizers field.
*
*
* .tensorflow.AutoParallelOptions auto_parallel = 5;
*/
org.tensorflow.framework.AutoParallelOptionsOrBuilder getAutoParallelOrBuilder();
/**
*
* If true, any optimization pass failing will cause the MetaOptimizer to
* stop with an error. By default - or when set to false, failing passes are
* skipped silently.
*
*
* bool fail_on_optimizer_errors = 21;
*/
boolean getFailOnOptimizerErrors();
/**
* .tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;
*/
boolean hasScopedAllocatorOpts();
/**
* .tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;
*/
org.tensorflow.framework.ScopedAllocatorOptions getScopedAllocatorOpts();
/**
* .tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;
*/
org.tensorflow.framework.ScopedAllocatorOptionsOrBuilder getScopedAllocatorOptsOrBuilder();
/**
*
* If non-empty, will use this as an alternative way to specify a list of
* optimizations to turn on and the order of the optimizations (replacing the
* meta-optimizer).
* Of the RewriterConfig options, only the AutoParallel configuration options
* (the auto_parallel field) apply to manually requested optimization passes
* ("autoparallel"). Memory optimization passes ("memory") invoked here are
* not configurable (in contrast to memory optimization passes through the
* meta-optimizer) and act only on manual op annotations.
* Custom optimizers (see custom_optimizers) that are not part of this
* schedule will be run after - in the order that they were specified.
*
*
* repeated string optimizers = 100;
*/
java.util.List
getOptimizersList();
/**
*
* If non-empty, will use this as an alternative way to specify a list of
* optimizations to turn on and the order of the optimizations (replacing the
* meta-optimizer).
* Of the RewriterConfig options, only the AutoParallel configuration options
* (the auto_parallel field) apply to manually requested optimization passes
* ("autoparallel"). Memory optimization passes ("memory") invoked here are
* not configurable (in contrast to memory optimization passes through the
* meta-optimizer) and act only on manual op annotations.
* Custom optimizers (see custom_optimizers) that are not part of this
* schedule will be run after - in the order that they were specified.
*
*
* repeated string optimizers = 100;
*/
int getOptimizersCount();
/**
*
* If non-empty, will use this as an alternative way to specify a list of
* optimizations to turn on and the order of the optimizations (replacing the
* meta-optimizer).
* Of the RewriterConfig options, only the AutoParallel configuration options
* (the auto_parallel field) apply to manually requested optimization passes
* ("autoparallel"). Memory optimization passes ("memory") invoked here are
* not configurable (in contrast to memory optimization passes through the
* meta-optimizer) and act only on manual op annotations.
* Custom optimizers (see custom_optimizers) that are not part of this
* schedule will be run after - in the order that they were specified.
*
*
* repeated string optimizers = 100;
*/
java.lang.String getOptimizers(int index);
/**
*
* If non-empty, will use this as an alternative way to specify a list of
* optimizations to turn on and the order of the optimizations (replacing the
* meta-optimizer).
* Of the RewriterConfig options, only the AutoParallel configuration options
* (the auto_parallel field) apply to manually requested optimization passes
* ("autoparallel"). Memory optimization passes ("memory") invoked here are
* not configurable (in contrast to memory optimization passes through the
* meta-optimizer) and act only on manual op annotations.
* Custom optimizers (see custom_optimizers) that are not part of this
* schedule will be run after - in the order that they were specified.
*
*
* repeated string optimizers = 100;
*/
com.google.protobuf.ByteString
getOptimizersBytes(int index);
/**
*
* list of CustomGraphOptimizers to apply.
*
*
* repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;
*/
java.util.List
getCustomOptimizersList();
/**
*
* list of CustomGraphOptimizers to apply.
*
*
* repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;
*/
org.tensorflow.framework.RewriterConfig.CustomGraphOptimizer getCustomOptimizers(int index);
/**
*
* list of CustomGraphOptimizers to apply.
*
*
* repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;
*/
int getCustomOptimizersCount();
/**
*
* list of CustomGraphOptimizers to apply.
*
*
* repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;
*/
java.util.List extends org.tensorflow.framework.RewriterConfig.CustomGraphOptimizerOrBuilder>
getCustomOptimizersOrBuilderList();
/**
*
* list of CustomGraphOptimizers to apply.
*
*
* repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;
*/
org.tensorflow.framework.RewriterConfig.CustomGraphOptimizerOrBuilder getCustomOptimizersOrBuilder(
int index);
/**
*
* VerifierConfig specifying the verifiers to be run after every optimizer.
*
*
* .tensorflow.VerifierConfig inter_optimizer_verifier_config = 300;
*/
boolean hasInterOptimizerVerifierConfig();
/**
*
* VerifierConfig specifying the verifiers to be run after every optimizer.
*
*
* .tensorflow.VerifierConfig inter_optimizer_verifier_config = 300;
*/
org.tensorflow.framework.VerifierConfig getInterOptimizerVerifierConfig();
/**
*
* VerifierConfig specifying the verifiers to be run after every optimizer.
*
*
* .tensorflow.VerifierConfig inter_optimizer_verifier_config = 300;
*/
org.tensorflow.framework.VerifierConfigOrBuilder getInterOptimizerVerifierConfigOrBuilder();
/**
*
* VerifierConfig specifying the verifiers to be run at the end, after all
* optimizers have run.
*
*
* .tensorflow.VerifierConfig post_optimization_verifier_config = 301;
*/
boolean hasPostOptimizationVerifierConfig();
/**
*
* VerifierConfig specifying the verifiers to be run at the end, after all
* optimizers have run.
*
*
* .tensorflow.VerifierConfig post_optimization_verifier_config = 301;
*/
org.tensorflow.framework.VerifierConfig getPostOptimizationVerifierConfig();
/**
*
* VerifierConfig specifying the verifiers to be run at the end, after all
* optimizers have run.
*
*
* .tensorflow.VerifierConfig post_optimization_verifier_config = 301;
*/
org.tensorflow.framework.VerifierConfigOrBuilder getPostOptimizationVerifierConfigOrBuilder();
}