All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.tensorflow.framework.RunMetadata Maven / Gradle / Ivy

The newest version!
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: tensorflow/core/protobuf/config.proto

package org.tensorflow.framework;

/**
 * 
 * Metadata output (i.e., non-Tensor) for a single Run() call.
 * 
* * Protobuf type {@code tensorflow.RunMetadata} */ public final class RunMetadata extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.RunMetadata) RunMetadataOrBuilder { private static final long serialVersionUID = 0L; // Use RunMetadata.newBuilder() to construct. private RunMetadata(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private RunMetadata() { partitionGraphs_ = java.util.Collections.emptyList(); functionGraphs_ = java.util.Collections.emptyList(); } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private RunMetadata( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { this(); if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; default: { if (!parseUnknownFieldProto3( input, unknownFields, extensionRegistry, tag)) { done = true; } break; } case 10: { org.tensorflow.framework.StepStats.Builder subBuilder = null; if (stepStats_ != null) { subBuilder = stepStats_.toBuilder(); } stepStats_ = input.readMessage(org.tensorflow.framework.StepStats.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(stepStats_); stepStats_ = subBuilder.buildPartial(); } break; } case 18: { org.tensorflow.framework.CostGraphDef.Builder subBuilder = null; if (costGraph_ != null) { subBuilder = costGraph_.toBuilder(); } costGraph_ = input.readMessage(org.tensorflow.framework.CostGraphDef.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(costGraph_); costGraph_ = subBuilder.buildPartial(); } break; } case 26: { if (!((mutable_bitField0_ & 0x00000004) == 0x00000004)) { partitionGraphs_ = new java.util.ArrayList(); mutable_bitField0_ |= 0x00000004; } partitionGraphs_.add( input.readMessage(org.tensorflow.framework.GraphDef.parser(), extensionRegistry)); break; } case 34: { if (!((mutable_bitField0_ & 0x00000008) == 0x00000008)) { functionGraphs_ = new java.util.ArrayList(); mutable_bitField0_ |= 0x00000008; } functionGraphs_.add( input.readMessage(org.tensorflow.framework.RunMetadata.FunctionGraphs.parser(), extensionRegistry)); break; } } } } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(this); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException( e).setUnfinishedMessage(this); } finally { if (((mutable_bitField0_ & 0x00000004) == 0x00000004)) { partitionGraphs_ = java.util.Collections.unmodifiableList(partitionGraphs_); } if (((mutable_bitField0_ & 0x00000008) == 0x00000008)) { functionGraphs_ = java.util.Collections.unmodifiableList(functionGraphs_); } this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunMetadata_descriptor; } protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunMetadata_fieldAccessorTable .ensureFieldAccessorsInitialized( org.tensorflow.framework.RunMetadata.class, org.tensorflow.framework.RunMetadata.Builder.class); } public interface FunctionGraphsOrBuilder extends // @@protoc_insertion_point(interface_extends:tensorflow.RunMetadata.FunctionGraphs) com.google.protobuf.MessageOrBuilder { /** *
     * TODO(nareshmodi): Include some sort of function/cache-key identifier?
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ java.util.List getPartitionGraphsList(); /** *
     * TODO(nareshmodi): Include some sort of function/cache-key identifier?
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ org.tensorflow.framework.GraphDef getPartitionGraphs(int index); /** *
     * TODO(nareshmodi): Include some sort of function/cache-key identifier?
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ int getPartitionGraphsCount(); /** *
     * TODO(nareshmodi): Include some sort of function/cache-key identifier?
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ java.util.List getPartitionGraphsOrBuilderList(); /** *
     * TODO(nareshmodi): Include some sort of function/cache-key identifier?
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ org.tensorflow.framework.GraphDefOrBuilder getPartitionGraphsOrBuilder( int index); /** * .tensorflow.GraphDef pre_optimization_graph = 2; */ boolean hasPreOptimizationGraph(); /** * .tensorflow.GraphDef pre_optimization_graph = 2; */ org.tensorflow.framework.GraphDef getPreOptimizationGraph(); /** * .tensorflow.GraphDef pre_optimization_graph = 2; */ org.tensorflow.framework.GraphDefOrBuilder getPreOptimizationGraphOrBuilder(); /** * .tensorflow.GraphDef post_optimization_graph = 3; */ boolean hasPostOptimizationGraph(); /** * .tensorflow.GraphDef post_optimization_graph = 3; */ org.tensorflow.framework.GraphDef getPostOptimizationGraph(); /** * .tensorflow.GraphDef post_optimization_graph = 3; */ org.tensorflow.framework.GraphDefOrBuilder getPostOptimizationGraphOrBuilder(); } /** * Protobuf type {@code tensorflow.RunMetadata.FunctionGraphs} */ public static final class FunctionGraphs extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.RunMetadata.FunctionGraphs) FunctionGraphsOrBuilder { private static final long serialVersionUID = 0L; // Use FunctionGraphs.newBuilder() to construct. private FunctionGraphs(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private FunctionGraphs() { partitionGraphs_ = java.util.Collections.emptyList(); } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private FunctionGraphs( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { this(); if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; default: { if (!parseUnknownFieldProto3( input, unknownFields, extensionRegistry, tag)) { done = true; } break; } case 10: { if (!((mutable_bitField0_ & 0x00000001) == 0x00000001)) { partitionGraphs_ = new java.util.ArrayList(); mutable_bitField0_ |= 0x00000001; } partitionGraphs_.add( input.readMessage(org.tensorflow.framework.GraphDef.parser(), extensionRegistry)); break; } case 18: { org.tensorflow.framework.GraphDef.Builder subBuilder = null; if (preOptimizationGraph_ != null) { subBuilder = preOptimizationGraph_.toBuilder(); } preOptimizationGraph_ = input.readMessage(org.tensorflow.framework.GraphDef.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(preOptimizationGraph_); preOptimizationGraph_ = subBuilder.buildPartial(); } break; } case 26: { org.tensorflow.framework.GraphDef.Builder subBuilder = null; if (postOptimizationGraph_ != null) { subBuilder = postOptimizationGraph_.toBuilder(); } postOptimizationGraph_ = input.readMessage(org.tensorflow.framework.GraphDef.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(postOptimizationGraph_); postOptimizationGraph_ = subBuilder.buildPartial(); } break; } } } } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(this); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException( e).setUnfinishedMessage(this); } finally { if (((mutable_bitField0_ & 0x00000001) == 0x00000001)) { partitionGraphs_ = java.util.Collections.unmodifiableList(partitionGraphs_); } this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunMetadata_FunctionGraphs_descriptor; } protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunMetadata_FunctionGraphs_fieldAccessorTable .ensureFieldAccessorsInitialized( org.tensorflow.framework.RunMetadata.FunctionGraphs.class, org.tensorflow.framework.RunMetadata.FunctionGraphs.Builder.class); } private int bitField0_; public static final int PARTITION_GRAPHS_FIELD_NUMBER = 1; private java.util.List partitionGraphs_; /** *
     * TODO(nareshmodi): Include some sort of function/cache-key identifier?
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public java.util.List getPartitionGraphsList() { return partitionGraphs_; } /** *
     * TODO(nareshmodi): Include some sort of function/cache-key identifier?
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public java.util.List getPartitionGraphsOrBuilderList() { return partitionGraphs_; } /** *
     * TODO(nareshmodi): Include some sort of function/cache-key identifier?
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public int getPartitionGraphsCount() { return partitionGraphs_.size(); } /** *
     * TODO(nareshmodi): Include some sort of function/cache-key identifier?
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public org.tensorflow.framework.GraphDef getPartitionGraphs(int index) { return partitionGraphs_.get(index); } /** *
     * TODO(nareshmodi): Include some sort of function/cache-key identifier?
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public org.tensorflow.framework.GraphDefOrBuilder getPartitionGraphsOrBuilder( int index) { return partitionGraphs_.get(index); } public static final int PRE_OPTIMIZATION_GRAPH_FIELD_NUMBER = 2; private org.tensorflow.framework.GraphDef preOptimizationGraph_; /** * .tensorflow.GraphDef pre_optimization_graph = 2; */ public boolean hasPreOptimizationGraph() { return preOptimizationGraph_ != null; } /** * .tensorflow.GraphDef pre_optimization_graph = 2; */ public org.tensorflow.framework.GraphDef getPreOptimizationGraph() { return preOptimizationGraph_ == null ? org.tensorflow.framework.GraphDef.getDefaultInstance() : preOptimizationGraph_; } /** * .tensorflow.GraphDef pre_optimization_graph = 2; */ public org.tensorflow.framework.GraphDefOrBuilder getPreOptimizationGraphOrBuilder() { return getPreOptimizationGraph(); } public static final int POST_OPTIMIZATION_GRAPH_FIELD_NUMBER = 3; private org.tensorflow.framework.GraphDef postOptimizationGraph_; /** * .tensorflow.GraphDef post_optimization_graph = 3; */ public boolean hasPostOptimizationGraph() { return postOptimizationGraph_ != null; } /** * .tensorflow.GraphDef post_optimization_graph = 3; */ public org.tensorflow.framework.GraphDef getPostOptimizationGraph() { return postOptimizationGraph_ == null ? org.tensorflow.framework.GraphDef.getDefaultInstance() : postOptimizationGraph_; } /** * .tensorflow.GraphDef post_optimization_graph = 3; */ public org.tensorflow.framework.GraphDefOrBuilder getPostOptimizationGraphOrBuilder() { return getPostOptimizationGraph(); } private byte memoizedIsInitialized = -1; public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { for (int i = 0; i < partitionGraphs_.size(); i++) { output.writeMessage(1, partitionGraphs_.get(i)); } if (preOptimizationGraph_ != null) { output.writeMessage(2, getPreOptimizationGraph()); } if (postOptimizationGraph_ != null) { output.writeMessage(3, getPostOptimizationGraph()); } unknownFields.writeTo(output); } public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; for (int i = 0; i < partitionGraphs_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(1, partitionGraphs_.get(i)); } if (preOptimizationGraph_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(2, getPreOptimizationGraph()); } if (postOptimizationGraph_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(3, getPostOptimizationGraph()); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof org.tensorflow.framework.RunMetadata.FunctionGraphs)) { return super.equals(obj); } org.tensorflow.framework.RunMetadata.FunctionGraphs other = (org.tensorflow.framework.RunMetadata.FunctionGraphs) obj; boolean result = true; result = result && getPartitionGraphsList() .equals(other.getPartitionGraphsList()); result = result && (hasPreOptimizationGraph() == other.hasPreOptimizationGraph()); if (hasPreOptimizationGraph()) { result = result && getPreOptimizationGraph() .equals(other.getPreOptimizationGraph()); } result = result && (hasPostOptimizationGraph() == other.hasPostOptimizationGraph()); if (hasPostOptimizationGraph()) { result = result && getPostOptimizationGraph() .equals(other.getPostOptimizationGraph()); } result = result && unknownFields.equals(other.unknownFields); return result; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (getPartitionGraphsCount() > 0) { hash = (37 * hash) + PARTITION_GRAPHS_FIELD_NUMBER; hash = (53 * hash) + getPartitionGraphsList().hashCode(); } if (hasPreOptimizationGraph()) { hash = (37 * hash) + PRE_OPTIMIZATION_GRAPH_FIELD_NUMBER; hash = (53 * hash) + getPreOptimizationGraph().hashCode(); } if (hasPostOptimizationGraph()) { hash = (37 * hash) + POST_OPTIMIZATION_GRAPH_FIELD_NUMBER; hash = (53 * hash) + getPostOptimizationGraph().hashCode(); } hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static org.tensorflow.framework.RunMetadata.FunctionGraphs parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.framework.RunMetadata.FunctionGraphs parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.framework.RunMetadata.FunctionGraphs parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.framework.RunMetadata.FunctionGraphs parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.framework.RunMetadata.FunctionGraphs parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.framework.RunMetadata.FunctionGraphs parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.framework.RunMetadata.FunctionGraphs parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.framework.RunMetadata.FunctionGraphs parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.framework.RunMetadata.FunctionGraphs parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static org.tensorflow.framework.RunMetadata.FunctionGraphs parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.framework.RunMetadata.FunctionGraphs parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.framework.RunMetadata.FunctionGraphs parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(org.tensorflow.framework.RunMetadata.FunctionGraphs prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * Protobuf type {@code tensorflow.RunMetadata.FunctionGraphs} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.RunMetadata.FunctionGraphs) org.tensorflow.framework.RunMetadata.FunctionGraphsOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunMetadata_FunctionGraphs_descriptor; } protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunMetadata_FunctionGraphs_fieldAccessorTable .ensureFieldAccessorsInitialized( org.tensorflow.framework.RunMetadata.FunctionGraphs.class, org.tensorflow.framework.RunMetadata.FunctionGraphs.Builder.class); } // Construct using org.tensorflow.framework.RunMetadata.FunctionGraphs.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { getPartitionGraphsFieldBuilder(); } } public Builder clear() { super.clear(); if (partitionGraphsBuilder_ == null) { partitionGraphs_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000001); } else { partitionGraphsBuilder_.clear(); } if (preOptimizationGraphBuilder_ == null) { preOptimizationGraph_ = null; } else { preOptimizationGraph_ = null; preOptimizationGraphBuilder_ = null; } if (postOptimizationGraphBuilder_ == null) { postOptimizationGraph_ = null; } else { postOptimizationGraph_ = null; postOptimizationGraphBuilder_ = null; } return this; } public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunMetadata_FunctionGraphs_descriptor; } public org.tensorflow.framework.RunMetadata.FunctionGraphs getDefaultInstanceForType() { return org.tensorflow.framework.RunMetadata.FunctionGraphs.getDefaultInstance(); } public org.tensorflow.framework.RunMetadata.FunctionGraphs build() { org.tensorflow.framework.RunMetadata.FunctionGraphs result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } public org.tensorflow.framework.RunMetadata.FunctionGraphs buildPartial() { org.tensorflow.framework.RunMetadata.FunctionGraphs result = new org.tensorflow.framework.RunMetadata.FunctionGraphs(this); int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (partitionGraphsBuilder_ == null) { if (((bitField0_ & 0x00000001) == 0x00000001)) { partitionGraphs_ = java.util.Collections.unmodifiableList(partitionGraphs_); bitField0_ = (bitField0_ & ~0x00000001); } result.partitionGraphs_ = partitionGraphs_; } else { result.partitionGraphs_ = partitionGraphsBuilder_.build(); } if (preOptimizationGraphBuilder_ == null) { result.preOptimizationGraph_ = preOptimizationGraph_; } else { result.preOptimizationGraph_ = preOptimizationGraphBuilder_.build(); } if (postOptimizationGraphBuilder_ == null) { result.postOptimizationGraph_ = postOptimizationGraph_; } else { result.postOptimizationGraph_ = postOptimizationGraphBuilder_.build(); } result.bitField0_ = to_bitField0_; onBuilt(); return result; } public Builder clone() { return (Builder) super.clone(); } public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.setField(field, value); } public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return (Builder) super.clearField(field); } public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return (Builder) super.clearOneof(oneof); } public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return (Builder) super.setRepeatedField(field, index, value); } public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.addRepeatedField(field, value); } public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof org.tensorflow.framework.RunMetadata.FunctionGraphs) { return mergeFrom((org.tensorflow.framework.RunMetadata.FunctionGraphs)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(org.tensorflow.framework.RunMetadata.FunctionGraphs other) { if (other == org.tensorflow.framework.RunMetadata.FunctionGraphs.getDefaultInstance()) return this; if (partitionGraphsBuilder_ == null) { if (!other.partitionGraphs_.isEmpty()) { if (partitionGraphs_.isEmpty()) { partitionGraphs_ = other.partitionGraphs_; bitField0_ = (bitField0_ & ~0x00000001); } else { ensurePartitionGraphsIsMutable(); partitionGraphs_.addAll(other.partitionGraphs_); } onChanged(); } } else { if (!other.partitionGraphs_.isEmpty()) { if (partitionGraphsBuilder_.isEmpty()) { partitionGraphsBuilder_.dispose(); partitionGraphsBuilder_ = null; partitionGraphs_ = other.partitionGraphs_; bitField0_ = (bitField0_ & ~0x00000001); partitionGraphsBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getPartitionGraphsFieldBuilder() : null; } else { partitionGraphsBuilder_.addAllMessages(other.partitionGraphs_); } } } if (other.hasPreOptimizationGraph()) { mergePreOptimizationGraph(other.getPreOptimizationGraph()); } if (other.hasPostOptimizationGraph()) { mergePostOptimizationGraph(other.getPostOptimizationGraph()); } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } public final boolean isInitialized() { return true; } public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { org.tensorflow.framework.RunMetadata.FunctionGraphs parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (org.tensorflow.framework.RunMetadata.FunctionGraphs) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private int bitField0_; private java.util.List partitionGraphs_ = java.util.Collections.emptyList(); private void ensurePartitionGraphsIsMutable() { if (!((bitField0_ & 0x00000001) == 0x00000001)) { partitionGraphs_ = new java.util.ArrayList(partitionGraphs_); bitField0_ |= 0x00000001; } } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.framework.GraphDef, org.tensorflow.framework.GraphDef.Builder, org.tensorflow.framework.GraphDefOrBuilder> partitionGraphsBuilder_; /** *
       * TODO(nareshmodi): Include some sort of function/cache-key identifier?
       * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public java.util.List getPartitionGraphsList() { if (partitionGraphsBuilder_ == null) { return java.util.Collections.unmodifiableList(partitionGraphs_); } else { return partitionGraphsBuilder_.getMessageList(); } } /** *
       * TODO(nareshmodi): Include some sort of function/cache-key identifier?
       * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public int getPartitionGraphsCount() { if (partitionGraphsBuilder_ == null) { return partitionGraphs_.size(); } else { return partitionGraphsBuilder_.getCount(); } } /** *
       * TODO(nareshmodi): Include some sort of function/cache-key identifier?
       * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public org.tensorflow.framework.GraphDef getPartitionGraphs(int index) { if (partitionGraphsBuilder_ == null) { return partitionGraphs_.get(index); } else { return partitionGraphsBuilder_.getMessage(index); } } /** *
       * TODO(nareshmodi): Include some sort of function/cache-key identifier?
       * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public Builder setPartitionGraphs( int index, org.tensorflow.framework.GraphDef value) { if (partitionGraphsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensurePartitionGraphsIsMutable(); partitionGraphs_.set(index, value); onChanged(); } else { partitionGraphsBuilder_.setMessage(index, value); } return this; } /** *
       * TODO(nareshmodi): Include some sort of function/cache-key identifier?
       * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public Builder setPartitionGraphs( int index, org.tensorflow.framework.GraphDef.Builder builderForValue) { if (partitionGraphsBuilder_ == null) { ensurePartitionGraphsIsMutable(); partitionGraphs_.set(index, builderForValue.build()); onChanged(); } else { partitionGraphsBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
       * TODO(nareshmodi): Include some sort of function/cache-key identifier?
       * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public Builder addPartitionGraphs(org.tensorflow.framework.GraphDef value) { if (partitionGraphsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensurePartitionGraphsIsMutable(); partitionGraphs_.add(value); onChanged(); } else { partitionGraphsBuilder_.addMessage(value); } return this; } /** *
       * TODO(nareshmodi): Include some sort of function/cache-key identifier?
       * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public Builder addPartitionGraphs( int index, org.tensorflow.framework.GraphDef value) { if (partitionGraphsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensurePartitionGraphsIsMutable(); partitionGraphs_.add(index, value); onChanged(); } else { partitionGraphsBuilder_.addMessage(index, value); } return this; } /** *
       * TODO(nareshmodi): Include some sort of function/cache-key identifier?
       * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public Builder addPartitionGraphs( org.tensorflow.framework.GraphDef.Builder builderForValue) { if (partitionGraphsBuilder_ == null) { ensurePartitionGraphsIsMutable(); partitionGraphs_.add(builderForValue.build()); onChanged(); } else { partitionGraphsBuilder_.addMessage(builderForValue.build()); } return this; } /** *
       * TODO(nareshmodi): Include some sort of function/cache-key identifier?
       * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public Builder addPartitionGraphs( int index, org.tensorflow.framework.GraphDef.Builder builderForValue) { if (partitionGraphsBuilder_ == null) { ensurePartitionGraphsIsMutable(); partitionGraphs_.add(index, builderForValue.build()); onChanged(); } else { partitionGraphsBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
       * TODO(nareshmodi): Include some sort of function/cache-key identifier?
       * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public Builder addAllPartitionGraphs( java.lang.Iterable values) { if (partitionGraphsBuilder_ == null) { ensurePartitionGraphsIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, partitionGraphs_); onChanged(); } else { partitionGraphsBuilder_.addAllMessages(values); } return this; } /** *
       * TODO(nareshmodi): Include some sort of function/cache-key identifier?
       * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public Builder clearPartitionGraphs() { if (partitionGraphsBuilder_ == null) { partitionGraphs_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); } else { partitionGraphsBuilder_.clear(); } return this; } /** *
       * TODO(nareshmodi): Include some sort of function/cache-key identifier?
       * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public Builder removePartitionGraphs(int index) { if (partitionGraphsBuilder_ == null) { ensurePartitionGraphsIsMutable(); partitionGraphs_.remove(index); onChanged(); } else { partitionGraphsBuilder_.remove(index); } return this; } /** *
       * TODO(nareshmodi): Include some sort of function/cache-key identifier?
       * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public org.tensorflow.framework.GraphDef.Builder getPartitionGraphsBuilder( int index) { return getPartitionGraphsFieldBuilder().getBuilder(index); } /** *
       * TODO(nareshmodi): Include some sort of function/cache-key identifier?
       * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public org.tensorflow.framework.GraphDefOrBuilder getPartitionGraphsOrBuilder( int index) { if (partitionGraphsBuilder_ == null) { return partitionGraphs_.get(index); } else { return partitionGraphsBuilder_.getMessageOrBuilder(index); } } /** *
       * TODO(nareshmodi): Include some sort of function/cache-key identifier?
       * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public java.util.List getPartitionGraphsOrBuilderList() { if (partitionGraphsBuilder_ != null) { return partitionGraphsBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(partitionGraphs_); } } /** *
       * TODO(nareshmodi): Include some sort of function/cache-key identifier?
       * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public org.tensorflow.framework.GraphDef.Builder addPartitionGraphsBuilder() { return getPartitionGraphsFieldBuilder().addBuilder( org.tensorflow.framework.GraphDef.getDefaultInstance()); } /** *
       * TODO(nareshmodi): Include some sort of function/cache-key identifier?
       * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public org.tensorflow.framework.GraphDef.Builder addPartitionGraphsBuilder( int index) { return getPartitionGraphsFieldBuilder().addBuilder( index, org.tensorflow.framework.GraphDef.getDefaultInstance()); } /** *
       * TODO(nareshmodi): Include some sort of function/cache-key identifier?
       * 
* * repeated .tensorflow.GraphDef partition_graphs = 1; */ public java.util.List getPartitionGraphsBuilderList() { return getPartitionGraphsFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.framework.GraphDef, org.tensorflow.framework.GraphDef.Builder, org.tensorflow.framework.GraphDefOrBuilder> getPartitionGraphsFieldBuilder() { if (partitionGraphsBuilder_ == null) { partitionGraphsBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.framework.GraphDef, org.tensorflow.framework.GraphDef.Builder, org.tensorflow.framework.GraphDefOrBuilder>( partitionGraphs_, ((bitField0_ & 0x00000001) == 0x00000001), getParentForChildren(), isClean()); partitionGraphs_ = null; } return partitionGraphsBuilder_; } private org.tensorflow.framework.GraphDef preOptimizationGraph_ = null; private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.GraphDef, org.tensorflow.framework.GraphDef.Builder, org.tensorflow.framework.GraphDefOrBuilder> preOptimizationGraphBuilder_; /** * .tensorflow.GraphDef pre_optimization_graph = 2; */ public boolean hasPreOptimizationGraph() { return preOptimizationGraphBuilder_ != null || preOptimizationGraph_ != null; } /** * .tensorflow.GraphDef pre_optimization_graph = 2; */ public org.tensorflow.framework.GraphDef getPreOptimizationGraph() { if (preOptimizationGraphBuilder_ == null) { return preOptimizationGraph_ == null ? org.tensorflow.framework.GraphDef.getDefaultInstance() : preOptimizationGraph_; } else { return preOptimizationGraphBuilder_.getMessage(); } } /** * .tensorflow.GraphDef pre_optimization_graph = 2; */ public Builder setPreOptimizationGraph(org.tensorflow.framework.GraphDef value) { if (preOptimizationGraphBuilder_ == null) { if (value == null) { throw new NullPointerException(); } preOptimizationGraph_ = value; onChanged(); } else { preOptimizationGraphBuilder_.setMessage(value); } return this; } /** * .tensorflow.GraphDef pre_optimization_graph = 2; */ public Builder setPreOptimizationGraph( org.tensorflow.framework.GraphDef.Builder builderForValue) { if (preOptimizationGraphBuilder_ == null) { preOptimizationGraph_ = builderForValue.build(); onChanged(); } else { preOptimizationGraphBuilder_.setMessage(builderForValue.build()); } return this; } /** * .tensorflow.GraphDef pre_optimization_graph = 2; */ public Builder mergePreOptimizationGraph(org.tensorflow.framework.GraphDef value) { if (preOptimizationGraphBuilder_ == null) { if (preOptimizationGraph_ != null) { preOptimizationGraph_ = org.tensorflow.framework.GraphDef.newBuilder(preOptimizationGraph_).mergeFrom(value).buildPartial(); } else { preOptimizationGraph_ = value; } onChanged(); } else { preOptimizationGraphBuilder_.mergeFrom(value); } return this; } /** * .tensorflow.GraphDef pre_optimization_graph = 2; */ public Builder clearPreOptimizationGraph() { if (preOptimizationGraphBuilder_ == null) { preOptimizationGraph_ = null; onChanged(); } else { preOptimizationGraph_ = null; preOptimizationGraphBuilder_ = null; } return this; } /** * .tensorflow.GraphDef pre_optimization_graph = 2; */ public org.tensorflow.framework.GraphDef.Builder getPreOptimizationGraphBuilder() { onChanged(); return getPreOptimizationGraphFieldBuilder().getBuilder(); } /** * .tensorflow.GraphDef pre_optimization_graph = 2; */ public org.tensorflow.framework.GraphDefOrBuilder getPreOptimizationGraphOrBuilder() { if (preOptimizationGraphBuilder_ != null) { return preOptimizationGraphBuilder_.getMessageOrBuilder(); } else { return preOptimizationGraph_ == null ? org.tensorflow.framework.GraphDef.getDefaultInstance() : preOptimizationGraph_; } } /** * .tensorflow.GraphDef pre_optimization_graph = 2; */ private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.GraphDef, org.tensorflow.framework.GraphDef.Builder, org.tensorflow.framework.GraphDefOrBuilder> getPreOptimizationGraphFieldBuilder() { if (preOptimizationGraphBuilder_ == null) { preOptimizationGraphBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.GraphDef, org.tensorflow.framework.GraphDef.Builder, org.tensorflow.framework.GraphDefOrBuilder>( getPreOptimizationGraph(), getParentForChildren(), isClean()); preOptimizationGraph_ = null; } return preOptimizationGraphBuilder_; } private org.tensorflow.framework.GraphDef postOptimizationGraph_ = null; private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.GraphDef, org.tensorflow.framework.GraphDef.Builder, org.tensorflow.framework.GraphDefOrBuilder> postOptimizationGraphBuilder_; /** * .tensorflow.GraphDef post_optimization_graph = 3; */ public boolean hasPostOptimizationGraph() { return postOptimizationGraphBuilder_ != null || postOptimizationGraph_ != null; } /** * .tensorflow.GraphDef post_optimization_graph = 3; */ public org.tensorflow.framework.GraphDef getPostOptimizationGraph() { if (postOptimizationGraphBuilder_ == null) { return postOptimizationGraph_ == null ? org.tensorflow.framework.GraphDef.getDefaultInstance() : postOptimizationGraph_; } else { return postOptimizationGraphBuilder_.getMessage(); } } /** * .tensorflow.GraphDef post_optimization_graph = 3; */ public Builder setPostOptimizationGraph(org.tensorflow.framework.GraphDef value) { if (postOptimizationGraphBuilder_ == null) { if (value == null) { throw new NullPointerException(); } postOptimizationGraph_ = value; onChanged(); } else { postOptimizationGraphBuilder_.setMessage(value); } return this; } /** * .tensorflow.GraphDef post_optimization_graph = 3; */ public Builder setPostOptimizationGraph( org.tensorflow.framework.GraphDef.Builder builderForValue) { if (postOptimizationGraphBuilder_ == null) { postOptimizationGraph_ = builderForValue.build(); onChanged(); } else { postOptimizationGraphBuilder_.setMessage(builderForValue.build()); } return this; } /** * .tensorflow.GraphDef post_optimization_graph = 3; */ public Builder mergePostOptimizationGraph(org.tensorflow.framework.GraphDef value) { if (postOptimizationGraphBuilder_ == null) { if (postOptimizationGraph_ != null) { postOptimizationGraph_ = org.tensorflow.framework.GraphDef.newBuilder(postOptimizationGraph_).mergeFrom(value).buildPartial(); } else { postOptimizationGraph_ = value; } onChanged(); } else { postOptimizationGraphBuilder_.mergeFrom(value); } return this; } /** * .tensorflow.GraphDef post_optimization_graph = 3; */ public Builder clearPostOptimizationGraph() { if (postOptimizationGraphBuilder_ == null) { postOptimizationGraph_ = null; onChanged(); } else { postOptimizationGraph_ = null; postOptimizationGraphBuilder_ = null; } return this; } /** * .tensorflow.GraphDef post_optimization_graph = 3; */ public org.tensorflow.framework.GraphDef.Builder getPostOptimizationGraphBuilder() { onChanged(); return getPostOptimizationGraphFieldBuilder().getBuilder(); } /** * .tensorflow.GraphDef post_optimization_graph = 3; */ public org.tensorflow.framework.GraphDefOrBuilder getPostOptimizationGraphOrBuilder() { if (postOptimizationGraphBuilder_ != null) { return postOptimizationGraphBuilder_.getMessageOrBuilder(); } else { return postOptimizationGraph_ == null ? org.tensorflow.framework.GraphDef.getDefaultInstance() : postOptimizationGraph_; } } /** * .tensorflow.GraphDef post_optimization_graph = 3; */ private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.GraphDef, org.tensorflow.framework.GraphDef.Builder, org.tensorflow.framework.GraphDefOrBuilder> getPostOptimizationGraphFieldBuilder() { if (postOptimizationGraphBuilder_ == null) { postOptimizationGraphBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.GraphDef, org.tensorflow.framework.GraphDef.Builder, org.tensorflow.framework.GraphDefOrBuilder>( getPostOptimizationGraph(), getParentForChildren(), isClean()); postOptimizationGraph_ = null; } return postOptimizationGraphBuilder_; } public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFieldsProto3(unknownFields); } public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.RunMetadata.FunctionGraphs) } // @@protoc_insertion_point(class_scope:tensorflow.RunMetadata.FunctionGraphs) private static final org.tensorflow.framework.RunMetadata.FunctionGraphs DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new org.tensorflow.framework.RunMetadata.FunctionGraphs(); } public static org.tensorflow.framework.RunMetadata.FunctionGraphs getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { public FunctionGraphs parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new FunctionGraphs(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } public org.tensorflow.framework.RunMetadata.FunctionGraphs getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } private int bitField0_; public static final int STEP_STATS_FIELD_NUMBER = 1; private org.tensorflow.framework.StepStats stepStats_; /** *
   * Statistics traced for this step. Populated if tracing is turned on via the
   * "RunOptions" proto.
   * EXPERIMENTAL: The format and set of events may change in future versions.
   * 
* * .tensorflow.StepStats step_stats = 1; */ public boolean hasStepStats() { return stepStats_ != null; } /** *
   * Statistics traced for this step. Populated if tracing is turned on via the
   * "RunOptions" proto.
   * EXPERIMENTAL: The format and set of events may change in future versions.
   * 
* * .tensorflow.StepStats step_stats = 1; */ public org.tensorflow.framework.StepStats getStepStats() { return stepStats_ == null ? org.tensorflow.framework.StepStats.getDefaultInstance() : stepStats_; } /** *
   * Statistics traced for this step. Populated if tracing is turned on via the
   * "RunOptions" proto.
   * EXPERIMENTAL: The format and set of events may change in future versions.
   * 
* * .tensorflow.StepStats step_stats = 1; */ public org.tensorflow.framework.StepStatsOrBuilder getStepStatsOrBuilder() { return getStepStats(); } public static final int COST_GRAPH_FIELD_NUMBER = 2; private org.tensorflow.framework.CostGraphDef costGraph_; /** *
   * The cost graph for the computation defined by the run call.
   * 
* * .tensorflow.CostGraphDef cost_graph = 2; */ public boolean hasCostGraph() { return costGraph_ != null; } /** *
   * The cost graph for the computation defined by the run call.
   * 
* * .tensorflow.CostGraphDef cost_graph = 2; */ public org.tensorflow.framework.CostGraphDef getCostGraph() { return costGraph_ == null ? org.tensorflow.framework.CostGraphDef.getDefaultInstance() : costGraph_; } /** *
   * The cost graph for the computation defined by the run call.
   * 
* * .tensorflow.CostGraphDef cost_graph = 2; */ public org.tensorflow.framework.CostGraphDefOrBuilder getCostGraphOrBuilder() { return getCostGraph(); } public static final int PARTITION_GRAPHS_FIELD_NUMBER = 3; private java.util.List partitionGraphs_; /** *
   * Graphs of the partitions executed by executors.
   * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public java.util.List getPartitionGraphsList() { return partitionGraphs_; } /** *
   * Graphs of the partitions executed by executors.
   * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public java.util.List getPartitionGraphsOrBuilderList() { return partitionGraphs_; } /** *
   * Graphs of the partitions executed by executors.
   * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public int getPartitionGraphsCount() { return partitionGraphs_.size(); } /** *
   * Graphs of the partitions executed by executors.
   * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public org.tensorflow.framework.GraphDef getPartitionGraphs(int index) { return partitionGraphs_.get(index); } /** *
   * Graphs of the partitions executed by executors.
   * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public org.tensorflow.framework.GraphDefOrBuilder getPartitionGraphsOrBuilder( int index) { return partitionGraphs_.get(index); } public static final int FUNCTION_GRAPHS_FIELD_NUMBER = 4; private java.util.List functionGraphs_; /** *
   * This is only populated for graphs that are run as functions in TensorFlow
   * V2. There will be an entry below for each function that is traced.
   * The main use cases of the post_optimization_graph and the partition_graphs
   * is to give the caller insight into the graphs that were actually run by the
   * runtime. Additional information (such as those in step_stats) will match
   * these graphs.
   * We also include the pre_optimization_graph since it is usually easier to
   * read, and is helpful in situations where the caller wants to get a high
   * level idea of what the built graph looks like (since the various graph
   * optimization passes might change the structure of the graph significantly).
   * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public java.util.List getFunctionGraphsList() { return functionGraphs_; } /** *
   * This is only populated for graphs that are run as functions in TensorFlow
   * V2. There will be an entry below for each function that is traced.
   * The main use cases of the post_optimization_graph and the partition_graphs
   * is to give the caller insight into the graphs that were actually run by the
   * runtime. Additional information (such as those in step_stats) will match
   * these graphs.
   * We also include the pre_optimization_graph since it is usually easier to
   * read, and is helpful in situations where the caller wants to get a high
   * level idea of what the built graph looks like (since the various graph
   * optimization passes might change the structure of the graph significantly).
   * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public java.util.List getFunctionGraphsOrBuilderList() { return functionGraphs_; } /** *
   * This is only populated for graphs that are run as functions in TensorFlow
   * V2. There will be an entry below for each function that is traced.
   * The main use cases of the post_optimization_graph and the partition_graphs
   * is to give the caller insight into the graphs that were actually run by the
   * runtime. Additional information (such as those in step_stats) will match
   * these graphs.
   * We also include the pre_optimization_graph since it is usually easier to
   * read, and is helpful in situations where the caller wants to get a high
   * level idea of what the built graph looks like (since the various graph
   * optimization passes might change the structure of the graph significantly).
   * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public int getFunctionGraphsCount() { return functionGraphs_.size(); } /** *
   * This is only populated for graphs that are run as functions in TensorFlow
   * V2. There will be an entry below for each function that is traced.
   * The main use cases of the post_optimization_graph and the partition_graphs
   * is to give the caller insight into the graphs that were actually run by the
   * runtime. Additional information (such as those in step_stats) will match
   * these graphs.
   * We also include the pre_optimization_graph since it is usually easier to
   * read, and is helpful in situations where the caller wants to get a high
   * level idea of what the built graph looks like (since the various graph
   * optimization passes might change the structure of the graph significantly).
   * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public org.tensorflow.framework.RunMetadata.FunctionGraphs getFunctionGraphs(int index) { return functionGraphs_.get(index); } /** *
   * This is only populated for graphs that are run as functions in TensorFlow
   * V2. There will be an entry below for each function that is traced.
   * The main use cases of the post_optimization_graph and the partition_graphs
   * is to give the caller insight into the graphs that were actually run by the
   * runtime. Additional information (such as those in step_stats) will match
   * these graphs.
   * We also include the pre_optimization_graph since it is usually easier to
   * read, and is helpful in situations where the caller wants to get a high
   * level idea of what the built graph looks like (since the various graph
   * optimization passes might change the structure of the graph significantly).
   * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public org.tensorflow.framework.RunMetadata.FunctionGraphsOrBuilder getFunctionGraphsOrBuilder( int index) { return functionGraphs_.get(index); } private byte memoizedIsInitialized = -1; public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (stepStats_ != null) { output.writeMessage(1, getStepStats()); } if (costGraph_ != null) { output.writeMessage(2, getCostGraph()); } for (int i = 0; i < partitionGraphs_.size(); i++) { output.writeMessage(3, partitionGraphs_.get(i)); } for (int i = 0; i < functionGraphs_.size(); i++) { output.writeMessage(4, functionGraphs_.get(i)); } unknownFields.writeTo(output); } public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (stepStats_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(1, getStepStats()); } if (costGraph_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(2, getCostGraph()); } for (int i = 0; i < partitionGraphs_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(3, partitionGraphs_.get(i)); } for (int i = 0; i < functionGraphs_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(4, functionGraphs_.get(i)); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof org.tensorflow.framework.RunMetadata)) { return super.equals(obj); } org.tensorflow.framework.RunMetadata other = (org.tensorflow.framework.RunMetadata) obj; boolean result = true; result = result && (hasStepStats() == other.hasStepStats()); if (hasStepStats()) { result = result && getStepStats() .equals(other.getStepStats()); } result = result && (hasCostGraph() == other.hasCostGraph()); if (hasCostGraph()) { result = result && getCostGraph() .equals(other.getCostGraph()); } result = result && getPartitionGraphsList() .equals(other.getPartitionGraphsList()); result = result && getFunctionGraphsList() .equals(other.getFunctionGraphsList()); result = result && unknownFields.equals(other.unknownFields); return result; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasStepStats()) { hash = (37 * hash) + STEP_STATS_FIELD_NUMBER; hash = (53 * hash) + getStepStats().hashCode(); } if (hasCostGraph()) { hash = (37 * hash) + COST_GRAPH_FIELD_NUMBER; hash = (53 * hash) + getCostGraph().hashCode(); } if (getPartitionGraphsCount() > 0) { hash = (37 * hash) + PARTITION_GRAPHS_FIELD_NUMBER; hash = (53 * hash) + getPartitionGraphsList().hashCode(); } if (getFunctionGraphsCount() > 0) { hash = (37 * hash) + FUNCTION_GRAPHS_FIELD_NUMBER; hash = (53 * hash) + getFunctionGraphsList().hashCode(); } hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static org.tensorflow.framework.RunMetadata parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.framework.RunMetadata parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.framework.RunMetadata parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.framework.RunMetadata parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.framework.RunMetadata parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.framework.RunMetadata parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.framework.RunMetadata parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.framework.RunMetadata parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.framework.RunMetadata parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static org.tensorflow.framework.RunMetadata parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.framework.RunMetadata parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.framework.RunMetadata parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(org.tensorflow.framework.RunMetadata prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
   * Metadata output (i.e., non-Tensor) for a single Run() call.
   * 
* * Protobuf type {@code tensorflow.RunMetadata} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.RunMetadata) org.tensorflow.framework.RunMetadataOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunMetadata_descriptor; } protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunMetadata_fieldAccessorTable .ensureFieldAccessorsInitialized( org.tensorflow.framework.RunMetadata.class, org.tensorflow.framework.RunMetadata.Builder.class); } // Construct using org.tensorflow.framework.RunMetadata.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { getPartitionGraphsFieldBuilder(); getFunctionGraphsFieldBuilder(); } } public Builder clear() { super.clear(); if (stepStatsBuilder_ == null) { stepStats_ = null; } else { stepStats_ = null; stepStatsBuilder_ = null; } if (costGraphBuilder_ == null) { costGraph_ = null; } else { costGraph_ = null; costGraphBuilder_ = null; } if (partitionGraphsBuilder_ == null) { partitionGraphs_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000004); } else { partitionGraphsBuilder_.clear(); } if (functionGraphsBuilder_ == null) { functionGraphs_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000008); } else { functionGraphsBuilder_.clear(); } return this; } public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunMetadata_descriptor; } public org.tensorflow.framework.RunMetadata getDefaultInstanceForType() { return org.tensorflow.framework.RunMetadata.getDefaultInstance(); } public org.tensorflow.framework.RunMetadata build() { org.tensorflow.framework.RunMetadata result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } public org.tensorflow.framework.RunMetadata buildPartial() { org.tensorflow.framework.RunMetadata result = new org.tensorflow.framework.RunMetadata(this); int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (stepStatsBuilder_ == null) { result.stepStats_ = stepStats_; } else { result.stepStats_ = stepStatsBuilder_.build(); } if (costGraphBuilder_ == null) { result.costGraph_ = costGraph_; } else { result.costGraph_ = costGraphBuilder_.build(); } if (partitionGraphsBuilder_ == null) { if (((bitField0_ & 0x00000004) == 0x00000004)) { partitionGraphs_ = java.util.Collections.unmodifiableList(partitionGraphs_); bitField0_ = (bitField0_ & ~0x00000004); } result.partitionGraphs_ = partitionGraphs_; } else { result.partitionGraphs_ = partitionGraphsBuilder_.build(); } if (functionGraphsBuilder_ == null) { if (((bitField0_ & 0x00000008) == 0x00000008)) { functionGraphs_ = java.util.Collections.unmodifiableList(functionGraphs_); bitField0_ = (bitField0_ & ~0x00000008); } result.functionGraphs_ = functionGraphs_; } else { result.functionGraphs_ = functionGraphsBuilder_.build(); } result.bitField0_ = to_bitField0_; onBuilt(); return result; } public Builder clone() { return (Builder) super.clone(); } public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.setField(field, value); } public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return (Builder) super.clearField(field); } public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return (Builder) super.clearOneof(oneof); } public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return (Builder) super.setRepeatedField(field, index, value); } public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.addRepeatedField(field, value); } public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof org.tensorflow.framework.RunMetadata) { return mergeFrom((org.tensorflow.framework.RunMetadata)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(org.tensorflow.framework.RunMetadata other) { if (other == org.tensorflow.framework.RunMetadata.getDefaultInstance()) return this; if (other.hasStepStats()) { mergeStepStats(other.getStepStats()); } if (other.hasCostGraph()) { mergeCostGraph(other.getCostGraph()); } if (partitionGraphsBuilder_ == null) { if (!other.partitionGraphs_.isEmpty()) { if (partitionGraphs_.isEmpty()) { partitionGraphs_ = other.partitionGraphs_; bitField0_ = (bitField0_ & ~0x00000004); } else { ensurePartitionGraphsIsMutable(); partitionGraphs_.addAll(other.partitionGraphs_); } onChanged(); } } else { if (!other.partitionGraphs_.isEmpty()) { if (partitionGraphsBuilder_.isEmpty()) { partitionGraphsBuilder_.dispose(); partitionGraphsBuilder_ = null; partitionGraphs_ = other.partitionGraphs_; bitField0_ = (bitField0_ & ~0x00000004); partitionGraphsBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getPartitionGraphsFieldBuilder() : null; } else { partitionGraphsBuilder_.addAllMessages(other.partitionGraphs_); } } } if (functionGraphsBuilder_ == null) { if (!other.functionGraphs_.isEmpty()) { if (functionGraphs_.isEmpty()) { functionGraphs_ = other.functionGraphs_; bitField0_ = (bitField0_ & ~0x00000008); } else { ensureFunctionGraphsIsMutable(); functionGraphs_.addAll(other.functionGraphs_); } onChanged(); } } else { if (!other.functionGraphs_.isEmpty()) { if (functionGraphsBuilder_.isEmpty()) { functionGraphsBuilder_.dispose(); functionGraphsBuilder_ = null; functionGraphs_ = other.functionGraphs_; bitField0_ = (bitField0_ & ~0x00000008); functionGraphsBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getFunctionGraphsFieldBuilder() : null; } else { functionGraphsBuilder_.addAllMessages(other.functionGraphs_); } } } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } public final boolean isInitialized() { return true; } public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { org.tensorflow.framework.RunMetadata parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (org.tensorflow.framework.RunMetadata) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private int bitField0_; private org.tensorflow.framework.StepStats stepStats_ = null; private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.StepStats, org.tensorflow.framework.StepStats.Builder, org.tensorflow.framework.StepStatsOrBuilder> stepStatsBuilder_; /** *
     * Statistics traced for this step. Populated if tracing is turned on via the
     * "RunOptions" proto.
     * EXPERIMENTAL: The format and set of events may change in future versions.
     * 
* * .tensorflow.StepStats step_stats = 1; */ public boolean hasStepStats() { return stepStatsBuilder_ != null || stepStats_ != null; } /** *
     * Statistics traced for this step. Populated if tracing is turned on via the
     * "RunOptions" proto.
     * EXPERIMENTAL: The format and set of events may change in future versions.
     * 
* * .tensorflow.StepStats step_stats = 1; */ public org.tensorflow.framework.StepStats getStepStats() { if (stepStatsBuilder_ == null) { return stepStats_ == null ? org.tensorflow.framework.StepStats.getDefaultInstance() : stepStats_; } else { return stepStatsBuilder_.getMessage(); } } /** *
     * Statistics traced for this step. Populated if tracing is turned on via the
     * "RunOptions" proto.
     * EXPERIMENTAL: The format and set of events may change in future versions.
     * 
* * .tensorflow.StepStats step_stats = 1; */ public Builder setStepStats(org.tensorflow.framework.StepStats value) { if (stepStatsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } stepStats_ = value; onChanged(); } else { stepStatsBuilder_.setMessage(value); } return this; } /** *
     * Statistics traced for this step. Populated if tracing is turned on via the
     * "RunOptions" proto.
     * EXPERIMENTAL: The format and set of events may change in future versions.
     * 
* * .tensorflow.StepStats step_stats = 1; */ public Builder setStepStats( org.tensorflow.framework.StepStats.Builder builderForValue) { if (stepStatsBuilder_ == null) { stepStats_ = builderForValue.build(); onChanged(); } else { stepStatsBuilder_.setMessage(builderForValue.build()); } return this; } /** *
     * Statistics traced for this step. Populated if tracing is turned on via the
     * "RunOptions" proto.
     * EXPERIMENTAL: The format and set of events may change in future versions.
     * 
* * .tensorflow.StepStats step_stats = 1; */ public Builder mergeStepStats(org.tensorflow.framework.StepStats value) { if (stepStatsBuilder_ == null) { if (stepStats_ != null) { stepStats_ = org.tensorflow.framework.StepStats.newBuilder(stepStats_).mergeFrom(value).buildPartial(); } else { stepStats_ = value; } onChanged(); } else { stepStatsBuilder_.mergeFrom(value); } return this; } /** *
     * Statistics traced for this step. Populated if tracing is turned on via the
     * "RunOptions" proto.
     * EXPERIMENTAL: The format and set of events may change in future versions.
     * 
* * .tensorflow.StepStats step_stats = 1; */ public Builder clearStepStats() { if (stepStatsBuilder_ == null) { stepStats_ = null; onChanged(); } else { stepStats_ = null; stepStatsBuilder_ = null; } return this; } /** *
     * Statistics traced for this step. Populated if tracing is turned on via the
     * "RunOptions" proto.
     * EXPERIMENTAL: The format and set of events may change in future versions.
     * 
* * .tensorflow.StepStats step_stats = 1; */ public org.tensorflow.framework.StepStats.Builder getStepStatsBuilder() { onChanged(); return getStepStatsFieldBuilder().getBuilder(); } /** *
     * Statistics traced for this step. Populated if tracing is turned on via the
     * "RunOptions" proto.
     * EXPERIMENTAL: The format and set of events may change in future versions.
     * 
* * .tensorflow.StepStats step_stats = 1; */ public org.tensorflow.framework.StepStatsOrBuilder getStepStatsOrBuilder() { if (stepStatsBuilder_ != null) { return stepStatsBuilder_.getMessageOrBuilder(); } else { return stepStats_ == null ? org.tensorflow.framework.StepStats.getDefaultInstance() : stepStats_; } } /** *
     * Statistics traced for this step. Populated if tracing is turned on via the
     * "RunOptions" proto.
     * EXPERIMENTAL: The format and set of events may change in future versions.
     * 
* * .tensorflow.StepStats step_stats = 1; */ private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.StepStats, org.tensorflow.framework.StepStats.Builder, org.tensorflow.framework.StepStatsOrBuilder> getStepStatsFieldBuilder() { if (stepStatsBuilder_ == null) { stepStatsBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.StepStats, org.tensorflow.framework.StepStats.Builder, org.tensorflow.framework.StepStatsOrBuilder>( getStepStats(), getParentForChildren(), isClean()); stepStats_ = null; } return stepStatsBuilder_; } private org.tensorflow.framework.CostGraphDef costGraph_ = null; private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.CostGraphDef, org.tensorflow.framework.CostGraphDef.Builder, org.tensorflow.framework.CostGraphDefOrBuilder> costGraphBuilder_; /** *
     * The cost graph for the computation defined by the run call.
     * 
* * .tensorflow.CostGraphDef cost_graph = 2; */ public boolean hasCostGraph() { return costGraphBuilder_ != null || costGraph_ != null; } /** *
     * The cost graph for the computation defined by the run call.
     * 
* * .tensorflow.CostGraphDef cost_graph = 2; */ public org.tensorflow.framework.CostGraphDef getCostGraph() { if (costGraphBuilder_ == null) { return costGraph_ == null ? org.tensorflow.framework.CostGraphDef.getDefaultInstance() : costGraph_; } else { return costGraphBuilder_.getMessage(); } } /** *
     * The cost graph for the computation defined by the run call.
     * 
* * .tensorflow.CostGraphDef cost_graph = 2; */ public Builder setCostGraph(org.tensorflow.framework.CostGraphDef value) { if (costGraphBuilder_ == null) { if (value == null) { throw new NullPointerException(); } costGraph_ = value; onChanged(); } else { costGraphBuilder_.setMessage(value); } return this; } /** *
     * The cost graph for the computation defined by the run call.
     * 
* * .tensorflow.CostGraphDef cost_graph = 2; */ public Builder setCostGraph( org.tensorflow.framework.CostGraphDef.Builder builderForValue) { if (costGraphBuilder_ == null) { costGraph_ = builderForValue.build(); onChanged(); } else { costGraphBuilder_.setMessage(builderForValue.build()); } return this; } /** *
     * The cost graph for the computation defined by the run call.
     * 
* * .tensorflow.CostGraphDef cost_graph = 2; */ public Builder mergeCostGraph(org.tensorflow.framework.CostGraphDef value) { if (costGraphBuilder_ == null) { if (costGraph_ != null) { costGraph_ = org.tensorflow.framework.CostGraphDef.newBuilder(costGraph_).mergeFrom(value).buildPartial(); } else { costGraph_ = value; } onChanged(); } else { costGraphBuilder_.mergeFrom(value); } return this; } /** *
     * The cost graph for the computation defined by the run call.
     * 
* * .tensorflow.CostGraphDef cost_graph = 2; */ public Builder clearCostGraph() { if (costGraphBuilder_ == null) { costGraph_ = null; onChanged(); } else { costGraph_ = null; costGraphBuilder_ = null; } return this; } /** *
     * The cost graph for the computation defined by the run call.
     * 
* * .tensorflow.CostGraphDef cost_graph = 2; */ public org.tensorflow.framework.CostGraphDef.Builder getCostGraphBuilder() { onChanged(); return getCostGraphFieldBuilder().getBuilder(); } /** *
     * The cost graph for the computation defined by the run call.
     * 
* * .tensorflow.CostGraphDef cost_graph = 2; */ public org.tensorflow.framework.CostGraphDefOrBuilder getCostGraphOrBuilder() { if (costGraphBuilder_ != null) { return costGraphBuilder_.getMessageOrBuilder(); } else { return costGraph_ == null ? org.tensorflow.framework.CostGraphDef.getDefaultInstance() : costGraph_; } } /** *
     * The cost graph for the computation defined by the run call.
     * 
* * .tensorflow.CostGraphDef cost_graph = 2; */ private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.CostGraphDef, org.tensorflow.framework.CostGraphDef.Builder, org.tensorflow.framework.CostGraphDefOrBuilder> getCostGraphFieldBuilder() { if (costGraphBuilder_ == null) { costGraphBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.CostGraphDef, org.tensorflow.framework.CostGraphDef.Builder, org.tensorflow.framework.CostGraphDefOrBuilder>( getCostGraph(), getParentForChildren(), isClean()); costGraph_ = null; } return costGraphBuilder_; } private java.util.List partitionGraphs_ = java.util.Collections.emptyList(); private void ensurePartitionGraphsIsMutable() { if (!((bitField0_ & 0x00000004) == 0x00000004)) { partitionGraphs_ = new java.util.ArrayList(partitionGraphs_); bitField0_ |= 0x00000004; } } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.framework.GraphDef, org.tensorflow.framework.GraphDef.Builder, org.tensorflow.framework.GraphDefOrBuilder> partitionGraphsBuilder_; /** *
     * Graphs of the partitions executed by executors.
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public java.util.List getPartitionGraphsList() { if (partitionGraphsBuilder_ == null) { return java.util.Collections.unmodifiableList(partitionGraphs_); } else { return partitionGraphsBuilder_.getMessageList(); } } /** *
     * Graphs of the partitions executed by executors.
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public int getPartitionGraphsCount() { if (partitionGraphsBuilder_ == null) { return partitionGraphs_.size(); } else { return partitionGraphsBuilder_.getCount(); } } /** *
     * Graphs of the partitions executed by executors.
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public org.tensorflow.framework.GraphDef getPartitionGraphs(int index) { if (partitionGraphsBuilder_ == null) { return partitionGraphs_.get(index); } else { return partitionGraphsBuilder_.getMessage(index); } } /** *
     * Graphs of the partitions executed by executors.
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public Builder setPartitionGraphs( int index, org.tensorflow.framework.GraphDef value) { if (partitionGraphsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensurePartitionGraphsIsMutable(); partitionGraphs_.set(index, value); onChanged(); } else { partitionGraphsBuilder_.setMessage(index, value); } return this; } /** *
     * Graphs of the partitions executed by executors.
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public Builder setPartitionGraphs( int index, org.tensorflow.framework.GraphDef.Builder builderForValue) { if (partitionGraphsBuilder_ == null) { ensurePartitionGraphsIsMutable(); partitionGraphs_.set(index, builderForValue.build()); onChanged(); } else { partitionGraphsBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
     * Graphs of the partitions executed by executors.
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public Builder addPartitionGraphs(org.tensorflow.framework.GraphDef value) { if (partitionGraphsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensurePartitionGraphsIsMutable(); partitionGraphs_.add(value); onChanged(); } else { partitionGraphsBuilder_.addMessage(value); } return this; } /** *
     * Graphs of the partitions executed by executors.
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public Builder addPartitionGraphs( int index, org.tensorflow.framework.GraphDef value) { if (partitionGraphsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensurePartitionGraphsIsMutable(); partitionGraphs_.add(index, value); onChanged(); } else { partitionGraphsBuilder_.addMessage(index, value); } return this; } /** *
     * Graphs of the partitions executed by executors.
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public Builder addPartitionGraphs( org.tensorflow.framework.GraphDef.Builder builderForValue) { if (partitionGraphsBuilder_ == null) { ensurePartitionGraphsIsMutable(); partitionGraphs_.add(builderForValue.build()); onChanged(); } else { partitionGraphsBuilder_.addMessage(builderForValue.build()); } return this; } /** *
     * Graphs of the partitions executed by executors.
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public Builder addPartitionGraphs( int index, org.tensorflow.framework.GraphDef.Builder builderForValue) { if (partitionGraphsBuilder_ == null) { ensurePartitionGraphsIsMutable(); partitionGraphs_.add(index, builderForValue.build()); onChanged(); } else { partitionGraphsBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
     * Graphs of the partitions executed by executors.
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public Builder addAllPartitionGraphs( java.lang.Iterable values) { if (partitionGraphsBuilder_ == null) { ensurePartitionGraphsIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, partitionGraphs_); onChanged(); } else { partitionGraphsBuilder_.addAllMessages(values); } return this; } /** *
     * Graphs of the partitions executed by executors.
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public Builder clearPartitionGraphs() { if (partitionGraphsBuilder_ == null) { partitionGraphs_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000004); onChanged(); } else { partitionGraphsBuilder_.clear(); } return this; } /** *
     * Graphs of the partitions executed by executors.
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public Builder removePartitionGraphs(int index) { if (partitionGraphsBuilder_ == null) { ensurePartitionGraphsIsMutable(); partitionGraphs_.remove(index); onChanged(); } else { partitionGraphsBuilder_.remove(index); } return this; } /** *
     * Graphs of the partitions executed by executors.
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public org.tensorflow.framework.GraphDef.Builder getPartitionGraphsBuilder( int index) { return getPartitionGraphsFieldBuilder().getBuilder(index); } /** *
     * Graphs of the partitions executed by executors.
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public org.tensorflow.framework.GraphDefOrBuilder getPartitionGraphsOrBuilder( int index) { if (partitionGraphsBuilder_ == null) { return partitionGraphs_.get(index); } else { return partitionGraphsBuilder_.getMessageOrBuilder(index); } } /** *
     * Graphs of the partitions executed by executors.
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public java.util.List getPartitionGraphsOrBuilderList() { if (partitionGraphsBuilder_ != null) { return partitionGraphsBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(partitionGraphs_); } } /** *
     * Graphs of the partitions executed by executors.
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public org.tensorflow.framework.GraphDef.Builder addPartitionGraphsBuilder() { return getPartitionGraphsFieldBuilder().addBuilder( org.tensorflow.framework.GraphDef.getDefaultInstance()); } /** *
     * Graphs of the partitions executed by executors.
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public org.tensorflow.framework.GraphDef.Builder addPartitionGraphsBuilder( int index) { return getPartitionGraphsFieldBuilder().addBuilder( index, org.tensorflow.framework.GraphDef.getDefaultInstance()); } /** *
     * Graphs of the partitions executed by executors.
     * 
* * repeated .tensorflow.GraphDef partition_graphs = 3; */ public java.util.List getPartitionGraphsBuilderList() { return getPartitionGraphsFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.framework.GraphDef, org.tensorflow.framework.GraphDef.Builder, org.tensorflow.framework.GraphDefOrBuilder> getPartitionGraphsFieldBuilder() { if (partitionGraphsBuilder_ == null) { partitionGraphsBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.framework.GraphDef, org.tensorflow.framework.GraphDef.Builder, org.tensorflow.framework.GraphDefOrBuilder>( partitionGraphs_, ((bitField0_ & 0x00000004) == 0x00000004), getParentForChildren(), isClean()); partitionGraphs_ = null; } return partitionGraphsBuilder_; } private java.util.List functionGraphs_ = java.util.Collections.emptyList(); private void ensureFunctionGraphsIsMutable() { if (!((bitField0_ & 0x00000008) == 0x00000008)) { functionGraphs_ = new java.util.ArrayList(functionGraphs_); bitField0_ |= 0x00000008; } } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.framework.RunMetadata.FunctionGraphs, org.tensorflow.framework.RunMetadata.FunctionGraphs.Builder, org.tensorflow.framework.RunMetadata.FunctionGraphsOrBuilder> functionGraphsBuilder_; /** *
     * This is only populated for graphs that are run as functions in TensorFlow
     * V2. There will be an entry below for each function that is traced.
     * The main use cases of the post_optimization_graph and the partition_graphs
     * is to give the caller insight into the graphs that were actually run by the
     * runtime. Additional information (such as those in step_stats) will match
     * these graphs.
     * We also include the pre_optimization_graph since it is usually easier to
     * read, and is helpful in situations where the caller wants to get a high
     * level idea of what the built graph looks like (since the various graph
     * optimization passes might change the structure of the graph significantly).
     * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public java.util.List getFunctionGraphsList() { if (functionGraphsBuilder_ == null) { return java.util.Collections.unmodifiableList(functionGraphs_); } else { return functionGraphsBuilder_.getMessageList(); } } /** *
     * This is only populated for graphs that are run as functions in TensorFlow
     * V2. There will be an entry below for each function that is traced.
     * The main use cases of the post_optimization_graph and the partition_graphs
     * is to give the caller insight into the graphs that were actually run by the
     * runtime. Additional information (such as those in step_stats) will match
     * these graphs.
     * We also include the pre_optimization_graph since it is usually easier to
     * read, and is helpful in situations where the caller wants to get a high
     * level idea of what the built graph looks like (since the various graph
     * optimization passes might change the structure of the graph significantly).
     * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public int getFunctionGraphsCount() { if (functionGraphsBuilder_ == null) { return functionGraphs_.size(); } else { return functionGraphsBuilder_.getCount(); } } /** *
     * This is only populated for graphs that are run as functions in TensorFlow
     * V2. There will be an entry below for each function that is traced.
     * The main use cases of the post_optimization_graph and the partition_graphs
     * is to give the caller insight into the graphs that were actually run by the
     * runtime. Additional information (such as those in step_stats) will match
     * these graphs.
     * We also include the pre_optimization_graph since it is usually easier to
     * read, and is helpful in situations where the caller wants to get a high
     * level idea of what the built graph looks like (since the various graph
     * optimization passes might change the structure of the graph significantly).
     * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public org.tensorflow.framework.RunMetadata.FunctionGraphs getFunctionGraphs(int index) { if (functionGraphsBuilder_ == null) { return functionGraphs_.get(index); } else { return functionGraphsBuilder_.getMessage(index); } } /** *
     * This is only populated for graphs that are run as functions in TensorFlow
     * V2. There will be an entry below for each function that is traced.
     * The main use cases of the post_optimization_graph and the partition_graphs
     * is to give the caller insight into the graphs that were actually run by the
     * runtime. Additional information (such as those in step_stats) will match
     * these graphs.
     * We also include the pre_optimization_graph since it is usually easier to
     * read, and is helpful in situations where the caller wants to get a high
     * level idea of what the built graph looks like (since the various graph
     * optimization passes might change the structure of the graph significantly).
     * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public Builder setFunctionGraphs( int index, org.tensorflow.framework.RunMetadata.FunctionGraphs value) { if (functionGraphsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureFunctionGraphsIsMutable(); functionGraphs_.set(index, value); onChanged(); } else { functionGraphsBuilder_.setMessage(index, value); } return this; } /** *
     * This is only populated for graphs that are run as functions in TensorFlow
     * V2. There will be an entry below for each function that is traced.
     * The main use cases of the post_optimization_graph and the partition_graphs
     * is to give the caller insight into the graphs that were actually run by the
     * runtime. Additional information (such as those in step_stats) will match
     * these graphs.
     * We also include the pre_optimization_graph since it is usually easier to
     * read, and is helpful in situations where the caller wants to get a high
     * level idea of what the built graph looks like (since the various graph
     * optimization passes might change the structure of the graph significantly).
     * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public Builder setFunctionGraphs( int index, org.tensorflow.framework.RunMetadata.FunctionGraphs.Builder builderForValue) { if (functionGraphsBuilder_ == null) { ensureFunctionGraphsIsMutable(); functionGraphs_.set(index, builderForValue.build()); onChanged(); } else { functionGraphsBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
     * This is only populated for graphs that are run as functions in TensorFlow
     * V2. There will be an entry below for each function that is traced.
     * The main use cases of the post_optimization_graph and the partition_graphs
     * is to give the caller insight into the graphs that were actually run by the
     * runtime. Additional information (such as those in step_stats) will match
     * these graphs.
     * We also include the pre_optimization_graph since it is usually easier to
     * read, and is helpful in situations where the caller wants to get a high
     * level idea of what the built graph looks like (since the various graph
     * optimization passes might change the structure of the graph significantly).
     * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public Builder addFunctionGraphs(org.tensorflow.framework.RunMetadata.FunctionGraphs value) { if (functionGraphsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureFunctionGraphsIsMutable(); functionGraphs_.add(value); onChanged(); } else { functionGraphsBuilder_.addMessage(value); } return this; } /** *
     * This is only populated for graphs that are run as functions in TensorFlow
     * V2. There will be an entry below for each function that is traced.
     * The main use cases of the post_optimization_graph and the partition_graphs
     * is to give the caller insight into the graphs that were actually run by the
     * runtime. Additional information (such as those in step_stats) will match
     * these graphs.
     * We also include the pre_optimization_graph since it is usually easier to
     * read, and is helpful in situations where the caller wants to get a high
     * level idea of what the built graph looks like (since the various graph
     * optimization passes might change the structure of the graph significantly).
     * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public Builder addFunctionGraphs( int index, org.tensorflow.framework.RunMetadata.FunctionGraphs value) { if (functionGraphsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureFunctionGraphsIsMutable(); functionGraphs_.add(index, value); onChanged(); } else { functionGraphsBuilder_.addMessage(index, value); } return this; } /** *
     * This is only populated for graphs that are run as functions in TensorFlow
     * V2. There will be an entry below for each function that is traced.
     * The main use cases of the post_optimization_graph and the partition_graphs
     * is to give the caller insight into the graphs that were actually run by the
     * runtime. Additional information (such as those in step_stats) will match
     * these graphs.
     * We also include the pre_optimization_graph since it is usually easier to
     * read, and is helpful in situations where the caller wants to get a high
     * level idea of what the built graph looks like (since the various graph
     * optimization passes might change the structure of the graph significantly).
     * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public Builder addFunctionGraphs( org.tensorflow.framework.RunMetadata.FunctionGraphs.Builder builderForValue) { if (functionGraphsBuilder_ == null) { ensureFunctionGraphsIsMutable(); functionGraphs_.add(builderForValue.build()); onChanged(); } else { functionGraphsBuilder_.addMessage(builderForValue.build()); } return this; } /** *
     * This is only populated for graphs that are run as functions in TensorFlow
     * V2. There will be an entry below for each function that is traced.
     * The main use cases of the post_optimization_graph and the partition_graphs
     * is to give the caller insight into the graphs that were actually run by the
     * runtime. Additional information (such as those in step_stats) will match
     * these graphs.
     * We also include the pre_optimization_graph since it is usually easier to
     * read, and is helpful in situations where the caller wants to get a high
     * level idea of what the built graph looks like (since the various graph
     * optimization passes might change the structure of the graph significantly).
     * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public Builder addFunctionGraphs( int index, org.tensorflow.framework.RunMetadata.FunctionGraphs.Builder builderForValue) { if (functionGraphsBuilder_ == null) { ensureFunctionGraphsIsMutable(); functionGraphs_.add(index, builderForValue.build()); onChanged(); } else { functionGraphsBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
     * This is only populated for graphs that are run as functions in TensorFlow
     * V2. There will be an entry below for each function that is traced.
     * The main use cases of the post_optimization_graph and the partition_graphs
     * is to give the caller insight into the graphs that were actually run by the
     * runtime. Additional information (such as those in step_stats) will match
     * these graphs.
     * We also include the pre_optimization_graph since it is usually easier to
     * read, and is helpful in situations where the caller wants to get a high
     * level idea of what the built graph looks like (since the various graph
     * optimization passes might change the structure of the graph significantly).
     * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public Builder addAllFunctionGraphs( java.lang.Iterable values) { if (functionGraphsBuilder_ == null) { ensureFunctionGraphsIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, functionGraphs_); onChanged(); } else { functionGraphsBuilder_.addAllMessages(values); } return this; } /** *
     * This is only populated for graphs that are run as functions in TensorFlow
     * V2. There will be an entry below for each function that is traced.
     * The main use cases of the post_optimization_graph and the partition_graphs
     * is to give the caller insight into the graphs that were actually run by the
     * runtime. Additional information (such as those in step_stats) will match
     * these graphs.
     * We also include the pre_optimization_graph since it is usually easier to
     * read, and is helpful in situations where the caller wants to get a high
     * level idea of what the built graph looks like (since the various graph
     * optimization passes might change the structure of the graph significantly).
     * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public Builder clearFunctionGraphs() { if (functionGraphsBuilder_ == null) { functionGraphs_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000008); onChanged(); } else { functionGraphsBuilder_.clear(); } return this; } /** *
     * This is only populated for graphs that are run as functions in TensorFlow
     * V2. There will be an entry below for each function that is traced.
     * The main use cases of the post_optimization_graph and the partition_graphs
     * is to give the caller insight into the graphs that were actually run by the
     * runtime. Additional information (such as those in step_stats) will match
     * these graphs.
     * We also include the pre_optimization_graph since it is usually easier to
     * read, and is helpful in situations where the caller wants to get a high
     * level idea of what the built graph looks like (since the various graph
     * optimization passes might change the structure of the graph significantly).
     * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public Builder removeFunctionGraphs(int index) { if (functionGraphsBuilder_ == null) { ensureFunctionGraphsIsMutable(); functionGraphs_.remove(index); onChanged(); } else { functionGraphsBuilder_.remove(index); } return this; } /** *
     * This is only populated for graphs that are run as functions in TensorFlow
     * V2. There will be an entry below for each function that is traced.
     * The main use cases of the post_optimization_graph and the partition_graphs
     * is to give the caller insight into the graphs that were actually run by the
     * runtime. Additional information (such as those in step_stats) will match
     * these graphs.
     * We also include the pre_optimization_graph since it is usually easier to
     * read, and is helpful in situations where the caller wants to get a high
     * level idea of what the built graph looks like (since the various graph
     * optimization passes might change the structure of the graph significantly).
     * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public org.tensorflow.framework.RunMetadata.FunctionGraphs.Builder getFunctionGraphsBuilder( int index) { return getFunctionGraphsFieldBuilder().getBuilder(index); } /** *
     * This is only populated for graphs that are run as functions in TensorFlow
     * V2. There will be an entry below for each function that is traced.
     * The main use cases of the post_optimization_graph and the partition_graphs
     * is to give the caller insight into the graphs that were actually run by the
     * runtime. Additional information (such as those in step_stats) will match
     * these graphs.
     * We also include the pre_optimization_graph since it is usually easier to
     * read, and is helpful in situations where the caller wants to get a high
     * level idea of what the built graph looks like (since the various graph
     * optimization passes might change the structure of the graph significantly).
     * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public org.tensorflow.framework.RunMetadata.FunctionGraphsOrBuilder getFunctionGraphsOrBuilder( int index) { if (functionGraphsBuilder_ == null) { return functionGraphs_.get(index); } else { return functionGraphsBuilder_.getMessageOrBuilder(index); } } /** *
     * This is only populated for graphs that are run as functions in TensorFlow
     * V2. There will be an entry below for each function that is traced.
     * The main use cases of the post_optimization_graph and the partition_graphs
     * is to give the caller insight into the graphs that were actually run by the
     * runtime. Additional information (such as those in step_stats) will match
     * these graphs.
     * We also include the pre_optimization_graph since it is usually easier to
     * read, and is helpful in situations where the caller wants to get a high
     * level idea of what the built graph looks like (since the various graph
     * optimization passes might change the structure of the graph significantly).
     * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public java.util.List getFunctionGraphsOrBuilderList() { if (functionGraphsBuilder_ != null) { return functionGraphsBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(functionGraphs_); } } /** *
     * This is only populated for graphs that are run as functions in TensorFlow
     * V2. There will be an entry below for each function that is traced.
     * The main use cases of the post_optimization_graph and the partition_graphs
     * is to give the caller insight into the graphs that were actually run by the
     * runtime. Additional information (such as those in step_stats) will match
     * these graphs.
     * We also include the pre_optimization_graph since it is usually easier to
     * read, and is helpful in situations where the caller wants to get a high
     * level idea of what the built graph looks like (since the various graph
     * optimization passes might change the structure of the graph significantly).
     * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public org.tensorflow.framework.RunMetadata.FunctionGraphs.Builder addFunctionGraphsBuilder() { return getFunctionGraphsFieldBuilder().addBuilder( org.tensorflow.framework.RunMetadata.FunctionGraphs.getDefaultInstance()); } /** *
     * This is only populated for graphs that are run as functions in TensorFlow
     * V2. There will be an entry below for each function that is traced.
     * The main use cases of the post_optimization_graph and the partition_graphs
     * is to give the caller insight into the graphs that were actually run by the
     * runtime. Additional information (such as those in step_stats) will match
     * these graphs.
     * We also include the pre_optimization_graph since it is usually easier to
     * read, and is helpful in situations where the caller wants to get a high
     * level idea of what the built graph looks like (since the various graph
     * optimization passes might change the structure of the graph significantly).
     * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public org.tensorflow.framework.RunMetadata.FunctionGraphs.Builder addFunctionGraphsBuilder( int index) { return getFunctionGraphsFieldBuilder().addBuilder( index, org.tensorflow.framework.RunMetadata.FunctionGraphs.getDefaultInstance()); } /** *
     * This is only populated for graphs that are run as functions in TensorFlow
     * V2. There will be an entry below for each function that is traced.
     * The main use cases of the post_optimization_graph and the partition_graphs
     * is to give the caller insight into the graphs that were actually run by the
     * runtime. Additional information (such as those in step_stats) will match
     * these graphs.
     * We also include the pre_optimization_graph since it is usually easier to
     * read, and is helpful in situations where the caller wants to get a high
     * level idea of what the built graph looks like (since the various graph
     * optimization passes might change the structure of the graph significantly).
     * 
* * repeated .tensorflow.RunMetadata.FunctionGraphs function_graphs = 4; */ public java.util.List getFunctionGraphsBuilderList() { return getFunctionGraphsFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.framework.RunMetadata.FunctionGraphs, org.tensorflow.framework.RunMetadata.FunctionGraphs.Builder, org.tensorflow.framework.RunMetadata.FunctionGraphsOrBuilder> getFunctionGraphsFieldBuilder() { if (functionGraphsBuilder_ == null) { functionGraphsBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.framework.RunMetadata.FunctionGraphs, org.tensorflow.framework.RunMetadata.FunctionGraphs.Builder, org.tensorflow.framework.RunMetadata.FunctionGraphsOrBuilder>( functionGraphs_, ((bitField0_ & 0x00000008) == 0x00000008), getParentForChildren(), isClean()); functionGraphs_ = null; } return functionGraphsBuilder_; } public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFieldsProto3(unknownFields); } public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.RunMetadata) } // @@protoc_insertion_point(class_scope:tensorflow.RunMetadata) private static final org.tensorflow.framework.RunMetadata DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new org.tensorflow.framework.RunMetadata(); } public static org.tensorflow.framework.RunMetadata getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { public RunMetadata parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new RunMetadata(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } public org.tensorflow.framework.RunMetadata getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy