All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.tensorflow.framework.RunOptions Maven / Gradle / Ivy

The newest version!
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: tensorflow/core/protobuf/config.proto

package org.tensorflow.framework;

/**
 * 
 * Options for a single Run() call.
 * 
* * Protobuf type {@code tensorflow.RunOptions} */ public final class RunOptions extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.RunOptions) RunOptionsOrBuilder { private static final long serialVersionUID = 0L; // Use RunOptions.newBuilder() to construct. private RunOptions(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private RunOptions() { traceLevel_ = 0; timeoutInMs_ = 0L; interOpThreadPool_ = 0; outputPartitionGraphs_ = false; reportTensorAllocationsUponOom_ = false; } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private RunOptions( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { this(); if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; default: { if (!parseUnknownFieldProto3( input, unknownFields, extensionRegistry, tag)) { done = true; } break; } case 8: { int rawValue = input.readEnum(); traceLevel_ = rawValue; break; } case 16: { timeoutInMs_ = input.readInt64(); break; } case 24: { interOpThreadPool_ = input.readInt32(); break; } case 40: { outputPartitionGraphs_ = input.readBool(); break; } case 50: { org.tensorflow.framework.DebugOptions.Builder subBuilder = null; if (debugOptions_ != null) { subBuilder = debugOptions_.toBuilder(); } debugOptions_ = input.readMessage(org.tensorflow.framework.DebugOptions.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(debugOptions_); debugOptions_ = subBuilder.buildPartial(); } break; } case 56: { reportTensorAllocationsUponOom_ = input.readBool(); break; } case 66: { org.tensorflow.framework.RunOptions.Experimental.Builder subBuilder = null; if (experimental_ != null) { subBuilder = experimental_.toBuilder(); } experimental_ = input.readMessage(org.tensorflow.framework.RunOptions.Experimental.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(experimental_); experimental_ = subBuilder.buildPartial(); } break; } } } } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(this); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException( e).setUnfinishedMessage(this); } finally { this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunOptions_descriptor; } protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunOptions_fieldAccessorTable .ensureFieldAccessorsInitialized( org.tensorflow.framework.RunOptions.class, org.tensorflow.framework.RunOptions.Builder.class); } /** *
   * TODO(pbar) Turn this into a TraceOptions proto which allows
   * tracing to be controlled in a more orthogonal manner?
   * 
* * Protobuf enum {@code tensorflow.RunOptions.TraceLevel} */ public enum TraceLevel implements com.google.protobuf.ProtocolMessageEnum { /** * NO_TRACE = 0; */ NO_TRACE(0), /** * SOFTWARE_TRACE = 1; */ SOFTWARE_TRACE(1), /** * HARDWARE_TRACE = 2; */ HARDWARE_TRACE(2), /** * FULL_TRACE = 3; */ FULL_TRACE(3), UNRECOGNIZED(-1), ; /** * NO_TRACE = 0; */ public static final int NO_TRACE_VALUE = 0; /** * SOFTWARE_TRACE = 1; */ public static final int SOFTWARE_TRACE_VALUE = 1; /** * HARDWARE_TRACE = 2; */ public static final int HARDWARE_TRACE_VALUE = 2; /** * FULL_TRACE = 3; */ public static final int FULL_TRACE_VALUE = 3; public final int getNumber() { if (this == UNRECOGNIZED) { throw new java.lang.IllegalArgumentException( "Can't get the number of an unknown enum value."); } return value; } /** * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static TraceLevel valueOf(int value) { return forNumber(value); } public static TraceLevel forNumber(int value) { switch (value) { case 0: return NO_TRACE; case 1: return SOFTWARE_TRACE; case 2: return HARDWARE_TRACE; case 3: return FULL_TRACE; default: return null; } } public static com.google.protobuf.Internal.EnumLiteMap internalGetValueMap() { return internalValueMap; } private static final com.google.protobuf.Internal.EnumLiteMap< TraceLevel> internalValueMap = new com.google.protobuf.Internal.EnumLiteMap() { public TraceLevel findValueByNumber(int number) { return TraceLevel.forNumber(number); } }; public final com.google.protobuf.Descriptors.EnumValueDescriptor getValueDescriptor() { return getDescriptor().getValues().get(ordinal()); } public final com.google.protobuf.Descriptors.EnumDescriptor getDescriptorForType() { return getDescriptor(); } public static final com.google.protobuf.Descriptors.EnumDescriptor getDescriptor() { return org.tensorflow.framework.RunOptions.getDescriptor().getEnumTypes().get(0); } private static final TraceLevel[] VALUES = values(); public static TraceLevel valueOf( com.google.protobuf.Descriptors.EnumValueDescriptor desc) { if (desc.getType() != getDescriptor()) { throw new java.lang.IllegalArgumentException( "EnumValueDescriptor is not for this type."); } if (desc.getIndex() == -1) { return UNRECOGNIZED; } return VALUES[desc.getIndex()]; } private final int value; private TraceLevel(int value) { this.value = value; } // @@protoc_insertion_point(enum_scope:tensorflow.RunOptions.TraceLevel) } public interface ExperimentalOrBuilder extends // @@protoc_insertion_point(interface_extends:tensorflow.RunOptions.Experimental) com.google.protobuf.MessageOrBuilder { /** *
     * If non-zero, declares that this graph is going to use collective
     * ops and must synchronize step_ids with any other graph with this
     * same group_key value (in a distributed computation where tasks
     * run disjoint graphs).
     * 
* * int64 collective_graph_key = 1; */ long getCollectiveGraphKey(); /** *
     * If true, then operations (using the inter-op pool) across all
     * session::run() calls will be centrally scheduled, optimizing for (median
     * and tail) latency.
     * Consider using this option for CPU-bound workloads like inference.
     * 
* * bool use_run_handler_pool = 2; */ boolean getUseRunHandlerPool(); } /** *
   * Everything inside Experimental is subject to change and is not subject
   * to API stability guarantees in
   * https://www.tensorflow.org/guide/version_compat.
   * 
* * Protobuf type {@code tensorflow.RunOptions.Experimental} */ public static final class Experimental extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.RunOptions.Experimental) ExperimentalOrBuilder { private static final long serialVersionUID = 0L; // Use Experimental.newBuilder() to construct. private Experimental(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private Experimental() { collectiveGraphKey_ = 0L; useRunHandlerPool_ = false; } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private Experimental( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { this(); if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; default: { if (!parseUnknownFieldProto3( input, unknownFields, extensionRegistry, tag)) { done = true; } break; } case 8: { collectiveGraphKey_ = input.readInt64(); break; } case 16: { useRunHandlerPool_ = input.readBool(); break; } } } } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(this); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException( e).setUnfinishedMessage(this); } finally { this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunOptions_Experimental_descriptor; } protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunOptions_Experimental_fieldAccessorTable .ensureFieldAccessorsInitialized( org.tensorflow.framework.RunOptions.Experimental.class, org.tensorflow.framework.RunOptions.Experimental.Builder.class); } public static final int COLLECTIVE_GRAPH_KEY_FIELD_NUMBER = 1; private long collectiveGraphKey_; /** *
     * If non-zero, declares that this graph is going to use collective
     * ops and must synchronize step_ids with any other graph with this
     * same group_key value (in a distributed computation where tasks
     * run disjoint graphs).
     * 
* * int64 collective_graph_key = 1; */ public long getCollectiveGraphKey() { return collectiveGraphKey_; } public static final int USE_RUN_HANDLER_POOL_FIELD_NUMBER = 2; private boolean useRunHandlerPool_; /** *
     * If true, then operations (using the inter-op pool) across all
     * session::run() calls will be centrally scheduled, optimizing for (median
     * and tail) latency.
     * Consider using this option for CPU-bound workloads like inference.
     * 
* * bool use_run_handler_pool = 2; */ public boolean getUseRunHandlerPool() { return useRunHandlerPool_; } private byte memoizedIsInitialized = -1; public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (collectiveGraphKey_ != 0L) { output.writeInt64(1, collectiveGraphKey_); } if (useRunHandlerPool_ != false) { output.writeBool(2, useRunHandlerPool_); } unknownFields.writeTo(output); } public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (collectiveGraphKey_ != 0L) { size += com.google.protobuf.CodedOutputStream .computeInt64Size(1, collectiveGraphKey_); } if (useRunHandlerPool_ != false) { size += com.google.protobuf.CodedOutputStream .computeBoolSize(2, useRunHandlerPool_); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof org.tensorflow.framework.RunOptions.Experimental)) { return super.equals(obj); } org.tensorflow.framework.RunOptions.Experimental other = (org.tensorflow.framework.RunOptions.Experimental) obj; boolean result = true; result = result && (getCollectiveGraphKey() == other.getCollectiveGraphKey()); result = result && (getUseRunHandlerPool() == other.getUseRunHandlerPool()); result = result && unknownFields.equals(other.unknownFields); return result; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + COLLECTIVE_GRAPH_KEY_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( getCollectiveGraphKey()); hash = (37 * hash) + USE_RUN_HANDLER_POOL_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getUseRunHandlerPool()); hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static org.tensorflow.framework.RunOptions.Experimental parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.framework.RunOptions.Experimental parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.framework.RunOptions.Experimental parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.framework.RunOptions.Experimental parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.framework.RunOptions.Experimental parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.framework.RunOptions.Experimental parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.framework.RunOptions.Experimental parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.framework.RunOptions.Experimental parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.framework.RunOptions.Experimental parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static org.tensorflow.framework.RunOptions.Experimental parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.framework.RunOptions.Experimental parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.framework.RunOptions.Experimental parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(org.tensorflow.framework.RunOptions.Experimental prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Everything inside Experimental is subject to change and is not subject
     * to API stability guarantees in
     * https://www.tensorflow.org/guide/version_compat.
     * 
* * Protobuf type {@code tensorflow.RunOptions.Experimental} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.RunOptions.Experimental) org.tensorflow.framework.RunOptions.ExperimentalOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunOptions_Experimental_descriptor; } protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunOptions_Experimental_fieldAccessorTable .ensureFieldAccessorsInitialized( org.tensorflow.framework.RunOptions.Experimental.class, org.tensorflow.framework.RunOptions.Experimental.Builder.class); } // Construct using org.tensorflow.framework.RunOptions.Experimental.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { } } public Builder clear() { super.clear(); collectiveGraphKey_ = 0L; useRunHandlerPool_ = false; return this; } public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunOptions_Experimental_descriptor; } public org.tensorflow.framework.RunOptions.Experimental getDefaultInstanceForType() { return org.tensorflow.framework.RunOptions.Experimental.getDefaultInstance(); } public org.tensorflow.framework.RunOptions.Experimental build() { org.tensorflow.framework.RunOptions.Experimental result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } public org.tensorflow.framework.RunOptions.Experimental buildPartial() { org.tensorflow.framework.RunOptions.Experimental result = new org.tensorflow.framework.RunOptions.Experimental(this); result.collectiveGraphKey_ = collectiveGraphKey_; result.useRunHandlerPool_ = useRunHandlerPool_; onBuilt(); return result; } public Builder clone() { return (Builder) super.clone(); } public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.setField(field, value); } public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return (Builder) super.clearField(field); } public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return (Builder) super.clearOneof(oneof); } public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return (Builder) super.setRepeatedField(field, index, value); } public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.addRepeatedField(field, value); } public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof org.tensorflow.framework.RunOptions.Experimental) { return mergeFrom((org.tensorflow.framework.RunOptions.Experimental)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(org.tensorflow.framework.RunOptions.Experimental other) { if (other == org.tensorflow.framework.RunOptions.Experimental.getDefaultInstance()) return this; if (other.getCollectiveGraphKey() != 0L) { setCollectiveGraphKey(other.getCollectiveGraphKey()); } if (other.getUseRunHandlerPool() != false) { setUseRunHandlerPool(other.getUseRunHandlerPool()); } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } public final boolean isInitialized() { return true; } public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { org.tensorflow.framework.RunOptions.Experimental parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (org.tensorflow.framework.RunOptions.Experimental) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private long collectiveGraphKey_ ; /** *
       * If non-zero, declares that this graph is going to use collective
       * ops and must synchronize step_ids with any other graph with this
       * same group_key value (in a distributed computation where tasks
       * run disjoint graphs).
       * 
* * int64 collective_graph_key = 1; */ public long getCollectiveGraphKey() { return collectiveGraphKey_; } /** *
       * If non-zero, declares that this graph is going to use collective
       * ops and must synchronize step_ids with any other graph with this
       * same group_key value (in a distributed computation where tasks
       * run disjoint graphs).
       * 
* * int64 collective_graph_key = 1; */ public Builder setCollectiveGraphKey(long value) { collectiveGraphKey_ = value; onChanged(); return this; } /** *
       * If non-zero, declares that this graph is going to use collective
       * ops and must synchronize step_ids with any other graph with this
       * same group_key value (in a distributed computation where tasks
       * run disjoint graphs).
       * 
* * int64 collective_graph_key = 1; */ public Builder clearCollectiveGraphKey() { collectiveGraphKey_ = 0L; onChanged(); return this; } private boolean useRunHandlerPool_ ; /** *
       * If true, then operations (using the inter-op pool) across all
       * session::run() calls will be centrally scheduled, optimizing for (median
       * and tail) latency.
       * Consider using this option for CPU-bound workloads like inference.
       * 
* * bool use_run_handler_pool = 2; */ public boolean getUseRunHandlerPool() { return useRunHandlerPool_; } /** *
       * If true, then operations (using the inter-op pool) across all
       * session::run() calls will be centrally scheduled, optimizing for (median
       * and tail) latency.
       * Consider using this option for CPU-bound workloads like inference.
       * 
* * bool use_run_handler_pool = 2; */ public Builder setUseRunHandlerPool(boolean value) { useRunHandlerPool_ = value; onChanged(); return this; } /** *
       * If true, then operations (using the inter-op pool) across all
       * session::run() calls will be centrally scheduled, optimizing for (median
       * and tail) latency.
       * Consider using this option for CPU-bound workloads like inference.
       * 
* * bool use_run_handler_pool = 2; */ public Builder clearUseRunHandlerPool() { useRunHandlerPool_ = false; onChanged(); return this; } public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFieldsProto3(unknownFields); } public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.RunOptions.Experimental) } // @@protoc_insertion_point(class_scope:tensorflow.RunOptions.Experimental) private static final org.tensorflow.framework.RunOptions.Experimental DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new org.tensorflow.framework.RunOptions.Experimental(); } public static org.tensorflow.framework.RunOptions.Experimental getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { public Experimental parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new Experimental(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } public org.tensorflow.framework.RunOptions.Experimental getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public static final int TRACE_LEVEL_FIELD_NUMBER = 1; private int traceLevel_; /** * .tensorflow.RunOptions.TraceLevel trace_level = 1; */ public int getTraceLevelValue() { return traceLevel_; } /** * .tensorflow.RunOptions.TraceLevel trace_level = 1; */ public org.tensorflow.framework.RunOptions.TraceLevel getTraceLevel() { org.tensorflow.framework.RunOptions.TraceLevel result = org.tensorflow.framework.RunOptions.TraceLevel.valueOf(traceLevel_); return result == null ? org.tensorflow.framework.RunOptions.TraceLevel.UNRECOGNIZED : result; } public static final int TIMEOUT_IN_MS_FIELD_NUMBER = 2; private long timeoutInMs_; /** *
   * Time to wait for operation to complete in milliseconds.
   * 
* * int64 timeout_in_ms = 2; */ public long getTimeoutInMs() { return timeoutInMs_; } public static final int INTER_OP_THREAD_POOL_FIELD_NUMBER = 3; private int interOpThreadPool_; /** *
   * The thread pool to use, if session_inter_op_thread_pool is configured.
   * To use the caller thread set this to -1 - this uses the caller thread
   * to execute Session::Run() and thus avoids a context switch. Using the
   * caller thread to execute Session::Run() should be done ONLY for simple
   * graphs, where the overhead of an additional context switch is
   * comparable with the overhead of Session::Run().
   * 
* * int32 inter_op_thread_pool = 3; */ public int getInterOpThreadPool() { return interOpThreadPool_; } public static final int OUTPUT_PARTITION_GRAPHS_FIELD_NUMBER = 5; private boolean outputPartitionGraphs_; /** *
   * Whether the partition graph(s) executed by the executor(s) should be
   * outputted via RunMetadata.
   * 
* * bool output_partition_graphs = 5; */ public boolean getOutputPartitionGraphs() { return outputPartitionGraphs_; } public static final int DEBUG_OPTIONS_FIELD_NUMBER = 6; private org.tensorflow.framework.DebugOptions debugOptions_; /** *
   * EXPERIMENTAL.  Options used to initialize DebuggerState, if enabled.
   * 
* * .tensorflow.DebugOptions debug_options = 6; */ public boolean hasDebugOptions() { return debugOptions_ != null; } /** *
   * EXPERIMENTAL.  Options used to initialize DebuggerState, if enabled.
   * 
* * .tensorflow.DebugOptions debug_options = 6; */ public org.tensorflow.framework.DebugOptions getDebugOptions() { return debugOptions_ == null ? org.tensorflow.framework.DebugOptions.getDefaultInstance() : debugOptions_; } /** *
   * EXPERIMENTAL.  Options used to initialize DebuggerState, if enabled.
   * 
* * .tensorflow.DebugOptions debug_options = 6; */ public org.tensorflow.framework.DebugOptionsOrBuilder getDebugOptionsOrBuilder() { return getDebugOptions(); } public static final int REPORT_TENSOR_ALLOCATIONS_UPON_OOM_FIELD_NUMBER = 7; private boolean reportTensorAllocationsUponOom_; /** *
   * When enabled, causes tensor allocation information to be included in
   * the error message when the Run() call fails because the allocator ran
   * out of memory (OOM).
   * Enabling this option can slow down the Run() call.
   * 
* * bool report_tensor_allocations_upon_oom = 7; */ public boolean getReportTensorAllocationsUponOom() { return reportTensorAllocationsUponOom_; } public static final int EXPERIMENTAL_FIELD_NUMBER = 8; private org.tensorflow.framework.RunOptions.Experimental experimental_; /** * .tensorflow.RunOptions.Experimental experimental = 8; */ public boolean hasExperimental() { return experimental_ != null; } /** * .tensorflow.RunOptions.Experimental experimental = 8; */ public org.tensorflow.framework.RunOptions.Experimental getExperimental() { return experimental_ == null ? org.tensorflow.framework.RunOptions.Experimental.getDefaultInstance() : experimental_; } /** * .tensorflow.RunOptions.Experimental experimental = 8; */ public org.tensorflow.framework.RunOptions.ExperimentalOrBuilder getExperimentalOrBuilder() { return getExperimental(); } private byte memoizedIsInitialized = -1; public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (traceLevel_ != org.tensorflow.framework.RunOptions.TraceLevel.NO_TRACE.getNumber()) { output.writeEnum(1, traceLevel_); } if (timeoutInMs_ != 0L) { output.writeInt64(2, timeoutInMs_); } if (interOpThreadPool_ != 0) { output.writeInt32(3, interOpThreadPool_); } if (outputPartitionGraphs_ != false) { output.writeBool(5, outputPartitionGraphs_); } if (debugOptions_ != null) { output.writeMessage(6, getDebugOptions()); } if (reportTensorAllocationsUponOom_ != false) { output.writeBool(7, reportTensorAllocationsUponOom_); } if (experimental_ != null) { output.writeMessage(8, getExperimental()); } unknownFields.writeTo(output); } public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (traceLevel_ != org.tensorflow.framework.RunOptions.TraceLevel.NO_TRACE.getNumber()) { size += com.google.protobuf.CodedOutputStream .computeEnumSize(1, traceLevel_); } if (timeoutInMs_ != 0L) { size += com.google.protobuf.CodedOutputStream .computeInt64Size(2, timeoutInMs_); } if (interOpThreadPool_ != 0) { size += com.google.protobuf.CodedOutputStream .computeInt32Size(3, interOpThreadPool_); } if (outputPartitionGraphs_ != false) { size += com.google.protobuf.CodedOutputStream .computeBoolSize(5, outputPartitionGraphs_); } if (debugOptions_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(6, getDebugOptions()); } if (reportTensorAllocationsUponOom_ != false) { size += com.google.protobuf.CodedOutputStream .computeBoolSize(7, reportTensorAllocationsUponOom_); } if (experimental_ != null) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(8, getExperimental()); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof org.tensorflow.framework.RunOptions)) { return super.equals(obj); } org.tensorflow.framework.RunOptions other = (org.tensorflow.framework.RunOptions) obj; boolean result = true; result = result && traceLevel_ == other.traceLevel_; result = result && (getTimeoutInMs() == other.getTimeoutInMs()); result = result && (getInterOpThreadPool() == other.getInterOpThreadPool()); result = result && (getOutputPartitionGraphs() == other.getOutputPartitionGraphs()); result = result && (hasDebugOptions() == other.hasDebugOptions()); if (hasDebugOptions()) { result = result && getDebugOptions() .equals(other.getDebugOptions()); } result = result && (getReportTensorAllocationsUponOom() == other.getReportTensorAllocationsUponOom()); result = result && (hasExperimental() == other.hasExperimental()); if (hasExperimental()) { result = result && getExperimental() .equals(other.getExperimental()); } result = result && unknownFields.equals(other.unknownFields); return result; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + TRACE_LEVEL_FIELD_NUMBER; hash = (53 * hash) + traceLevel_; hash = (37 * hash) + TIMEOUT_IN_MS_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( getTimeoutInMs()); hash = (37 * hash) + INTER_OP_THREAD_POOL_FIELD_NUMBER; hash = (53 * hash) + getInterOpThreadPool(); hash = (37 * hash) + OUTPUT_PARTITION_GRAPHS_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getOutputPartitionGraphs()); if (hasDebugOptions()) { hash = (37 * hash) + DEBUG_OPTIONS_FIELD_NUMBER; hash = (53 * hash) + getDebugOptions().hashCode(); } hash = (37 * hash) + REPORT_TENSOR_ALLOCATIONS_UPON_OOM_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getReportTensorAllocationsUponOom()); if (hasExperimental()) { hash = (37 * hash) + EXPERIMENTAL_FIELD_NUMBER; hash = (53 * hash) + getExperimental().hashCode(); } hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static org.tensorflow.framework.RunOptions parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.framework.RunOptions parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.framework.RunOptions parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.framework.RunOptions parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.framework.RunOptions parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.framework.RunOptions parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.framework.RunOptions parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.framework.RunOptions parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.framework.RunOptions parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static org.tensorflow.framework.RunOptions parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.framework.RunOptions parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.framework.RunOptions parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(org.tensorflow.framework.RunOptions prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
   * Options for a single Run() call.
   * 
* * Protobuf type {@code tensorflow.RunOptions} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.RunOptions) org.tensorflow.framework.RunOptionsOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunOptions_descriptor; } protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunOptions_fieldAccessorTable .ensureFieldAccessorsInitialized( org.tensorflow.framework.RunOptions.class, org.tensorflow.framework.RunOptions.Builder.class); } // Construct using org.tensorflow.framework.RunOptions.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { } } public Builder clear() { super.clear(); traceLevel_ = 0; timeoutInMs_ = 0L; interOpThreadPool_ = 0; outputPartitionGraphs_ = false; if (debugOptionsBuilder_ == null) { debugOptions_ = null; } else { debugOptions_ = null; debugOptionsBuilder_ = null; } reportTensorAllocationsUponOom_ = false; if (experimentalBuilder_ == null) { experimental_ = null; } else { experimental_ = null; experimentalBuilder_ = null; } return this; } public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return org.tensorflow.framework.ConfigProtos.internal_static_tensorflow_RunOptions_descriptor; } public org.tensorflow.framework.RunOptions getDefaultInstanceForType() { return org.tensorflow.framework.RunOptions.getDefaultInstance(); } public org.tensorflow.framework.RunOptions build() { org.tensorflow.framework.RunOptions result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } public org.tensorflow.framework.RunOptions buildPartial() { org.tensorflow.framework.RunOptions result = new org.tensorflow.framework.RunOptions(this); result.traceLevel_ = traceLevel_; result.timeoutInMs_ = timeoutInMs_; result.interOpThreadPool_ = interOpThreadPool_; result.outputPartitionGraphs_ = outputPartitionGraphs_; if (debugOptionsBuilder_ == null) { result.debugOptions_ = debugOptions_; } else { result.debugOptions_ = debugOptionsBuilder_.build(); } result.reportTensorAllocationsUponOom_ = reportTensorAllocationsUponOom_; if (experimentalBuilder_ == null) { result.experimental_ = experimental_; } else { result.experimental_ = experimentalBuilder_.build(); } onBuilt(); return result; } public Builder clone() { return (Builder) super.clone(); } public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.setField(field, value); } public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return (Builder) super.clearField(field); } public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return (Builder) super.clearOneof(oneof); } public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return (Builder) super.setRepeatedField(field, index, value); } public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return (Builder) super.addRepeatedField(field, value); } public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof org.tensorflow.framework.RunOptions) { return mergeFrom((org.tensorflow.framework.RunOptions)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(org.tensorflow.framework.RunOptions other) { if (other == org.tensorflow.framework.RunOptions.getDefaultInstance()) return this; if (other.traceLevel_ != 0) { setTraceLevelValue(other.getTraceLevelValue()); } if (other.getTimeoutInMs() != 0L) { setTimeoutInMs(other.getTimeoutInMs()); } if (other.getInterOpThreadPool() != 0) { setInterOpThreadPool(other.getInterOpThreadPool()); } if (other.getOutputPartitionGraphs() != false) { setOutputPartitionGraphs(other.getOutputPartitionGraphs()); } if (other.hasDebugOptions()) { mergeDebugOptions(other.getDebugOptions()); } if (other.getReportTensorAllocationsUponOom() != false) { setReportTensorAllocationsUponOom(other.getReportTensorAllocationsUponOom()); } if (other.hasExperimental()) { mergeExperimental(other.getExperimental()); } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } public final boolean isInitialized() { return true; } public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { org.tensorflow.framework.RunOptions parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (org.tensorflow.framework.RunOptions) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private int traceLevel_ = 0; /** * .tensorflow.RunOptions.TraceLevel trace_level = 1; */ public int getTraceLevelValue() { return traceLevel_; } /** * .tensorflow.RunOptions.TraceLevel trace_level = 1; */ public Builder setTraceLevelValue(int value) { traceLevel_ = value; onChanged(); return this; } /** * .tensorflow.RunOptions.TraceLevel trace_level = 1; */ public org.tensorflow.framework.RunOptions.TraceLevel getTraceLevel() { org.tensorflow.framework.RunOptions.TraceLevel result = org.tensorflow.framework.RunOptions.TraceLevel.valueOf(traceLevel_); return result == null ? org.tensorflow.framework.RunOptions.TraceLevel.UNRECOGNIZED : result; } /** * .tensorflow.RunOptions.TraceLevel trace_level = 1; */ public Builder setTraceLevel(org.tensorflow.framework.RunOptions.TraceLevel value) { if (value == null) { throw new NullPointerException(); } traceLevel_ = value.getNumber(); onChanged(); return this; } /** * .tensorflow.RunOptions.TraceLevel trace_level = 1; */ public Builder clearTraceLevel() { traceLevel_ = 0; onChanged(); return this; } private long timeoutInMs_ ; /** *
     * Time to wait for operation to complete in milliseconds.
     * 
* * int64 timeout_in_ms = 2; */ public long getTimeoutInMs() { return timeoutInMs_; } /** *
     * Time to wait for operation to complete in milliseconds.
     * 
* * int64 timeout_in_ms = 2; */ public Builder setTimeoutInMs(long value) { timeoutInMs_ = value; onChanged(); return this; } /** *
     * Time to wait for operation to complete in milliseconds.
     * 
* * int64 timeout_in_ms = 2; */ public Builder clearTimeoutInMs() { timeoutInMs_ = 0L; onChanged(); return this; } private int interOpThreadPool_ ; /** *
     * The thread pool to use, if session_inter_op_thread_pool is configured.
     * To use the caller thread set this to -1 - this uses the caller thread
     * to execute Session::Run() and thus avoids a context switch. Using the
     * caller thread to execute Session::Run() should be done ONLY for simple
     * graphs, where the overhead of an additional context switch is
     * comparable with the overhead of Session::Run().
     * 
* * int32 inter_op_thread_pool = 3; */ public int getInterOpThreadPool() { return interOpThreadPool_; } /** *
     * The thread pool to use, if session_inter_op_thread_pool is configured.
     * To use the caller thread set this to -1 - this uses the caller thread
     * to execute Session::Run() and thus avoids a context switch. Using the
     * caller thread to execute Session::Run() should be done ONLY for simple
     * graphs, where the overhead of an additional context switch is
     * comparable with the overhead of Session::Run().
     * 
* * int32 inter_op_thread_pool = 3; */ public Builder setInterOpThreadPool(int value) { interOpThreadPool_ = value; onChanged(); return this; } /** *
     * The thread pool to use, if session_inter_op_thread_pool is configured.
     * To use the caller thread set this to -1 - this uses the caller thread
     * to execute Session::Run() and thus avoids a context switch. Using the
     * caller thread to execute Session::Run() should be done ONLY for simple
     * graphs, where the overhead of an additional context switch is
     * comparable with the overhead of Session::Run().
     * 
* * int32 inter_op_thread_pool = 3; */ public Builder clearInterOpThreadPool() { interOpThreadPool_ = 0; onChanged(); return this; } private boolean outputPartitionGraphs_ ; /** *
     * Whether the partition graph(s) executed by the executor(s) should be
     * outputted via RunMetadata.
     * 
* * bool output_partition_graphs = 5; */ public boolean getOutputPartitionGraphs() { return outputPartitionGraphs_; } /** *
     * Whether the partition graph(s) executed by the executor(s) should be
     * outputted via RunMetadata.
     * 
* * bool output_partition_graphs = 5; */ public Builder setOutputPartitionGraphs(boolean value) { outputPartitionGraphs_ = value; onChanged(); return this; } /** *
     * Whether the partition graph(s) executed by the executor(s) should be
     * outputted via RunMetadata.
     * 
* * bool output_partition_graphs = 5; */ public Builder clearOutputPartitionGraphs() { outputPartitionGraphs_ = false; onChanged(); return this; } private org.tensorflow.framework.DebugOptions debugOptions_ = null; private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.DebugOptions, org.tensorflow.framework.DebugOptions.Builder, org.tensorflow.framework.DebugOptionsOrBuilder> debugOptionsBuilder_; /** *
     * EXPERIMENTAL.  Options used to initialize DebuggerState, if enabled.
     * 
* * .tensorflow.DebugOptions debug_options = 6; */ public boolean hasDebugOptions() { return debugOptionsBuilder_ != null || debugOptions_ != null; } /** *
     * EXPERIMENTAL.  Options used to initialize DebuggerState, if enabled.
     * 
* * .tensorflow.DebugOptions debug_options = 6; */ public org.tensorflow.framework.DebugOptions getDebugOptions() { if (debugOptionsBuilder_ == null) { return debugOptions_ == null ? org.tensorflow.framework.DebugOptions.getDefaultInstance() : debugOptions_; } else { return debugOptionsBuilder_.getMessage(); } } /** *
     * EXPERIMENTAL.  Options used to initialize DebuggerState, if enabled.
     * 
* * .tensorflow.DebugOptions debug_options = 6; */ public Builder setDebugOptions(org.tensorflow.framework.DebugOptions value) { if (debugOptionsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } debugOptions_ = value; onChanged(); } else { debugOptionsBuilder_.setMessage(value); } return this; } /** *
     * EXPERIMENTAL.  Options used to initialize DebuggerState, if enabled.
     * 
* * .tensorflow.DebugOptions debug_options = 6; */ public Builder setDebugOptions( org.tensorflow.framework.DebugOptions.Builder builderForValue) { if (debugOptionsBuilder_ == null) { debugOptions_ = builderForValue.build(); onChanged(); } else { debugOptionsBuilder_.setMessage(builderForValue.build()); } return this; } /** *
     * EXPERIMENTAL.  Options used to initialize DebuggerState, if enabled.
     * 
* * .tensorflow.DebugOptions debug_options = 6; */ public Builder mergeDebugOptions(org.tensorflow.framework.DebugOptions value) { if (debugOptionsBuilder_ == null) { if (debugOptions_ != null) { debugOptions_ = org.tensorflow.framework.DebugOptions.newBuilder(debugOptions_).mergeFrom(value).buildPartial(); } else { debugOptions_ = value; } onChanged(); } else { debugOptionsBuilder_.mergeFrom(value); } return this; } /** *
     * EXPERIMENTAL.  Options used to initialize DebuggerState, if enabled.
     * 
* * .tensorflow.DebugOptions debug_options = 6; */ public Builder clearDebugOptions() { if (debugOptionsBuilder_ == null) { debugOptions_ = null; onChanged(); } else { debugOptions_ = null; debugOptionsBuilder_ = null; } return this; } /** *
     * EXPERIMENTAL.  Options used to initialize DebuggerState, if enabled.
     * 
* * .tensorflow.DebugOptions debug_options = 6; */ public org.tensorflow.framework.DebugOptions.Builder getDebugOptionsBuilder() { onChanged(); return getDebugOptionsFieldBuilder().getBuilder(); } /** *
     * EXPERIMENTAL.  Options used to initialize DebuggerState, if enabled.
     * 
* * .tensorflow.DebugOptions debug_options = 6; */ public org.tensorflow.framework.DebugOptionsOrBuilder getDebugOptionsOrBuilder() { if (debugOptionsBuilder_ != null) { return debugOptionsBuilder_.getMessageOrBuilder(); } else { return debugOptions_ == null ? org.tensorflow.framework.DebugOptions.getDefaultInstance() : debugOptions_; } } /** *
     * EXPERIMENTAL.  Options used to initialize DebuggerState, if enabled.
     * 
* * .tensorflow.DebugOptions debug_options = 6; */ private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.DebugOptions, org.tensorflow.framework.DebugOptions.Builder, org.tensorflow.framework.DebugOptionsOrBuilder> getDebugOptionsFieldBuilder() { if (debugOptionsBuilder_ == null) { debugOptionsBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.DebugOptions, org.tensorflow.framework.DebugOptions.Builder, org.tensorflow.framework.DebugOptionsOrBuilder>( getDebugOptions(), getParentForChildren(), isClean()); debugOptions_ = null; } return debugOptionsBuilder_; } private boolean reportTensorAllocationsUponOom_ ; /** *
     * When enabled, causes tensor allocation information to be included in
     * the error message when the Run() call fails because the allocator ran
     * out of memory (OOM).
     * Enabling this option can slow down the Run() call.
     * 
* * bool report_tensor_allocations_upon_oom = 7; */ public boolean getReportTensorAllocationsUponOom() { return reportTensorAllocationsUponOom_; } /** *
     * When enabled, causes tensor allocation information to be included in
     * the error message when the Run() call fails because the allocator ran
     * out of memory (OOM).
     * Enabling this option can slow down the Run() call.
     * 
* * bool report_tensor_allocations_upon_oom = 7; */ public Builder setReportTensorAllocationsUponOom(boolean value) { reportTensorAllocationsUponOom_ = value; onChanged(); return this; } /** *
     * When enabled, causes tensor allocation information to be included in
     * the error message when the Run() call fails because the allocator ran
     * out of memory (OOM).
     * Enabling this option can slow down the Run() call.
     * 
* * bool report_tensor_allocations_upon_oom = 7; */ public Builder clearReportTensorAllocationsUponOom() { reportTensorAllocationsUponOom_ = false; onChanged(); return this; } private org.tensorflow.framework.RunOptions.Experimental experimental_ = null; private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.RunOptions.Experimental, org.tensorflow.framework.RunOptions.Experimental.Builder, org.tensorflow.framework.RunOptions.ExperimentalOrBuilder> experimentalBuilder_; /** * .tensorflow.RunOptions.Experimental experimental = 8; */ public boolean hasExperimental() { return experimentalBuilder_ != null || experimental_ != null; } /** * .tensorflow.RunOptions.Experimental experimental = 8; */ public org.tensorflow.framework.RunOptions.Experimental getExperimental() { if (experimentalBuilder_ == null) { return experimental_ == null ? org.tensorflow.framework.RunOptions.Experimental.getDefaultInstance() : experimental_; } else { return experimentalBuilder_.getMessage(); } } /** * .tensorflow.RunOptions.Experimental experimental = 8; */ public Builder setExperimental(org.tensorflow.framework.RunOptions.Experimental value) { if (experimentalBuilder_ == null) { if (value == null) { throw new NullPointerException(); } experimental_ = value; onChanged(); } else { experimentalBuilder_.setMessage(value); } return this; } /** * .tensorflow.RunOptions.Experimental experimental = 8; */ public Builder setExperimental( org.tensorflow.framework.RunOptions.Experimental.Builder builderForValue) { if (experimentalBuilder_ == null) { experimental_ = builderForValue.build(); onChanged(); } else { experimentalBuilder_.setMessage(builderForValue.build()); } return this; } /** * .tensorflow.RunOptions.Experimental experimental = 8; */ public Builder mergeExperimental(org.tensorflow.framework.RunOptions.Experimental value) { if (experimentalBuilder_ == null) { if (experimental_ != null) { experimental_ = org.tensorflow.framework.RunOptions.Experimental.newBuilder(experimental_).mergeFrom(value).buildPartial(); } else { experimental_ = value; } onChanged(); } else { experimentalBuilder_.mergeFrom(value); } return this; } /** * .tensorflow.RunOptions.Experimental experimental = 8; */ public Builder clearExperimental() { if (experimentalBuilder_ == null) { experimental_ = null; onChanged(); } else { experimental_ = null; experimentalBuilder_ = null; } return this; } /** * .tensorflow.RunOptions.Experimental experimental = 8; */ public org.tensorflow.framework.RunOptions.Experimental.Builder getExperimentalBuilder() { onChanged(); return getExperimentalFieldBuilder().getBuilder(); } /** * .tensorflow.RunOptions.Experimental experimental = 8; */ public org.tensorflow.framework.RunOptions.ExperimentalOrBuilder getExperimentalOrBuilder() { if (experimentalBuilder_ != null) { return experimentalBuilder_.getMessageOrBuilder(); } else { return experimental_ == null ? org.tensorflow.framework.RunOptions.Experimental.getDefaultInstance() : experimental_; } } /** * .tensorflow.RunOptions.Experimental experimental = 8; */ private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.RunOptions.Experimental, org.tensorflow.framework.RunOptions.Experimental.Builder, org.tensorflow.framework.RunOptions.ExperimentalOrBuilder> getExperimentalFieldBuilder() { if (experimentalBuilder_ == null) { experimentalBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.framework.RunOptions.Experimental, org.tensorflow.framework.RunOptions.Experimental.Builder, org.tensorflow.framework.RunOptions.ExperimentalOrBuilder>( getExperimental(), getParentForChildren(), isClean()); experimental_ = null; } return experimentalBuilder_; } public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFieldsProto3(unknownFields); } public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.RunOptions) } // @@protoc_insertion_point(class_scope:tensorflow.RunOptions) private static final org.tensorflow.framework.RunOptions DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new org.tensorflow.framework.RunOptions(); } public static org.tensorflow.framework.RunOptions getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { public RunOptions parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new RunOptions(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } public org.tensorflow.framework.RunOptions getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy