
org.terrier.matching.LearnedModelMatching Maven / Gradle / Ivy
The newest version!
/*
* Terrier - Terabyte Retriever
* Webpage: http://terrier.org
* Contact: terrier{a.}dcs.gla.ac.uk
* University of Glasgow - School of Computing Science
* http://www.gla.ac.uk/
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS"
* basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
* the License for the specific language governing rights and limitations
* under the License.
*
* The Original Code is LearnedModelMatching.java.
*
* The Original Code is Copyright (C) 2004-2020 the University of Glasgow.
* All Rights Reserved.
*
* Contributor(s):
* Craig Macdonald
*/
package org.terrier.matching;
import java.io.IOException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.terrier.learning.FeaturedResultSet;
import org.terrier.structures.CollectionStatistics;
import org.terrier.structures.Index;
import org.terrier.utility.ApplicationSetup;
import org.terrier.utility.StaTools;
/** An abstract class for applying a learned model onto a {@link FeaturedResultSet}.
*
* @author Craig Macdonald
* @since 4.0
*/
public abstract class LearnedModelMatching implements Matching {
protected final Matching parent;
protected Logger logger = LoggerFactory.getLogger(this.getClass());
/** Apply the loaded learned model for identifying the top N documents.
* @param N - number of documents
* @param in_scores - sample scores
* @param F number of features
* @param features indexed by feature THEN document
* @param out_scores - final scores
*/
protected abstract void applyModel(final int N, final double[] in_scores,
final int F, final double[][] features, final double[] out_scores);
final boolean normalise = Boolean.parseBoolean(ApplicationSetup.getProperty("fat.matching.model.normalise", "true"));
protected final boolean score_is_feature;
protected final int increment;
protected LearnedModelMatching(Matching _parent) {
super();
score_is_feature = Boolean.parseBoolean(ApplicationSetup.getProperty("fat.matching.model.score_is_feature", "true"));
increment = score_is_feature ? 1 : 0;
this.parent = _parent;
}
protected LearnedModelMatching(Index _index, Matching _parent) throws Exception
{
this(_parent);
}
@Override
public ResultSet match(String queryNumber, MatchingQueryTerms queryTerms) throws IOException {
final ResultSet _rs = parent.match(queryNumber, queryTerms);
final int N = _rs.getResultSize();
if (N == 0)
return _rs;
final FeaturedResultSet frs;
try{
frs = (FeaturedResultSet)_rs;
} catch (ClassCastException e) {
throw new IllegalArgumentException("Pass parent class of " + this.getInfo() + " should return a FeaturedResultSet", e);
}
final int[] docids = frs.getDocids();
final double[] in_scores = frs.getScores();
final int F = frs.getNumberOfFeatures();
final double[][] features = new double[F][];
for(int i=1;i<=F;i++)
{
features[i-1] = frs.getFeatureScores(i);
if (normalise)
StaTools.standardNormalisation(features[i-1]);
}
if (score_is_feature && normalise)
StaTools.standardNormalisation(in_scores);
final QueryResultSet rrs = new QueryResultSet(N);
final double[] out_scores = rrs.getScores();
System.arraycopy(docids, 0, rrs.getDocids(), 0, N);
logger.info("Applying learned model to "+ N + " documents");
applyModel(N, in_scores, F, features, out_scores);
rrs.sort();
return rrs;
}
@Override
public void setCollectionStatistics(CollectionStatistics cs) {
parent.setCollectionStatistics(cs);
}
@Override
public String getInfo() {
return this.getClass().getName();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy