org.testifyproject.bouncycastle.crypto.digests.SM3Digest Maven / Gradle / Ivy
package org.testifyproject.bouncycastle.crypto.digests;
import org.testifyproject.bouncycastle.util.Memoable;
import org.testifyproject.bouncycastle.util.Pack;
/**
* Implementation of Chinese SM3 digest as described at
* http://tools.ietf.org.testifyproject/html/draft-shen-sm3-hash-00
* and at .... ( Chinese PDF )
*
* The specification says "process a bit stream",
* but this is written to process bytes in blocks of 4,
* meaning this will process 32-bit word groups.
* But so do also most other digest specifications,
* including the SHA-256 which was a origin for
* this specification.
*/
public class SM3Digest
extends GeneralDigest
{
private static final int DIGEST_LENGTH = 32; // bytes
private static final int BLOCK_SIZE = 64 / 4; // of 32 bit ints (16 ints)
private int[] V = new int[DIGEST_LENGTH / 4]; // in 32 bit ints (8 ints)
private int[] inwords = new int[BLOCK_SIZE];
private int xOff;
// Work-bufs used within processBlock()
private int[] W = new int[68];
private int[] W1 = new int[64];
// Round constant T for processBlock() which is 32 bit integer rolled left up to (63 MOD 32) bit positions.
private static final int[] T = new int[64];
static
{
for (int i = 0; i < 16; ++i)
{
int t = 0x79CC4519;
T[i] = (t << i) | (t >>> (32 - i));
}
for (int i = 16; i < 64; ++i)
{
int n = i % 32;
int t = 0x7A879D8A;
T[i] = (t << n) | (t >>> (32 - n));
}
}
/**
* Standard constructor
*/
public SM3Digest()
{
reset();
}
/**
* Copy constructor. This will copy the state of the provided
* message digest.
*/
public SM3Digest(SM3Digest t)
{
super(t);
copyIn(t);
}
private void copyIn(SM3Digest t)
{
System.arraycopy(t.V, 0, this.V, 0, this.V.length);
System.arraycopy(t.inwords, 0, this.inwords, 0, this.inwords.length);
xOff = t.xOff;
}
public String getAlgorithmName()
{
return "SM3";
}
public int getDigestSize()
{
return DIGEST_LENGTH;
}
public Memoable copy()
{
return new SM3Digest(this);
}
public void reset(Memoable other)
{
SM3Digest d = (SM3Digest)other;
super.copyIn(d);
copyIn(d);
}
/**
* reset the chaining variables
*/
public void reset()
{
super.reset();
this.V[0] = 0x7380166F;
this.V[1] = 0x4914B2B9;
this.V[2] = 0x172442D7;
this.V[3] = 0xDA8A0600;
this.V[4] = 0xA96F30BC;
this.V[5] = 0x163138AA;
this.V[6] = 0xE38DEE4D;
this.V[7] = 0xB0FB0E4E;
this.xOff = 0;
}
public int doFinal(byte[] out,
int outOff)
{
finish();
Pack.intToBigEndian(this.V[0], out, outOff + 0);
Pack.intToBigEndian(this.V[1], out, outOff + 4);
Pack.intToBigEndian(this.V[2], out, outOff + 8);
Pack.intToBigEndian(this.V[3], out, outOff + 12);
Pack.intToBigEndian(this.V[4], out, outOff + 16);
Pack.intToBigEndian(this.V[5], out, outOff + 20);
Pack.intToBigEndian(this.V[6], out, outOff + 24);
Pack.intToBigEndian(this.V[7], out, outOff + 28);
reset();
return DIGEST_LENGTH;
}
protected void processWord(byte[] in,
int inOff)
{
// Note: Inlined for performance
// this.inwords[xOff] = Pack.bigEndianToInt(in, inOff);
int n = (((in[inOff] & 0xff) << 24) |
((in[++inOff] & 0xff) << 16) |
((in[++inOff] & 0xff) << 8) |
((in[++inOff] & 0xff)));
this.inwords[this.xOff] = n;
++this.xOff;
if (this.xOff >= 16)
{
processBlock();
}
}
protected void processLength(long bitLength)
{
if (this.xOff > (BLOCK_SIZE - 2))
{
// xOff == 15 --> can't fit the 64 bit length field at tail..
this.inwords[this.xOff] = 0; // fill with zero
++this.xOff;
processBlock();
}
// Fill with zero words, until reach 2nd to last slot
while (this.xOff < (BLOCK_SIZE - 2))
{
this.inwords[this.xOff] = 0;
++this.xOff;
}
// Store input data length in BITS
this.inwords[this.xOff++] = (int)(bitLength >>> 32);
this.inwords[this.xOff++] = (int)(bitLength);
}
/*
3.4.2. Constants
Tj = 79cc4519 when 0 < = j < = 15
Tj = 7a879d8a when 16 < = j < = 63
3.4.3. Boolean function
FFj(X;Y;Z) = X XOR Y XOR Z when 0 < = j < = 15
= (X AND Y) OR (X AND Z) OR (Y AND Z) when 16 < = j < = 63
GGj(X;Y;Z) = X XOR Y XOR Z when 0 < = j < = 15
= (X AND Y) OR (NOT X AND Z) when 16 < = j < = 63
The X, Y, Z in the fomular are words!GBP
3.4.4. Permutation function
P0(X) = X XOR (X <<< 9) XOR (X <<< 17) ## ROLL, not SHIFT
P1(X) = X XOR (X <<< 15) XOR (X <<< 23) ## ROLL, not SHIFT
The X in the fomular are a word.
----------
Each ROLL converted to Java expression:
ROLL 9 : ((x << 9) | (x >>> (32-9))))
ROLL 17 : ((x << 17) | (x >>> (32-17)))
ROLL 15 : ((x << 15) | (x >>> (32-15)))
ROLL 23 : ((x << 23) | (x >>> (32-23)))
*/
private int P0(final int x)
{
final int r9 = ((x << 9) | (x >>> (32 - 9)));
final int r17 = ((x << 17) | (x >>> (32 - 17)));
return (x ^ r9 ^ r17);
}
private int P1(final int x)
{
final int r15 = ((x << 15) | (x >>> (32 - 15)));
final int r23 = ((x << 23) | (x >>> (32 - 23)));
return (x ^ r15 ^ r23);
}
private int FF0(final int x, final int y, final int z)
{
return (x ^ y ^ z);
}
private int FF1(final int x, final int y, final int z)
{
return ((x & y) | (x & z) | (y & z));
}
private int GG0(final int x, final int y, final int z)
{
return (x ^ y ^ z);
}
private int GG1(final int x, final int y, final int z)
{
return ((x & y) | ((~x) & z));
}
protected void processBlock()
{
for (int j = 0; j < 16; ++j)
{
this.W[j] = this.inwords[j];
}
for (int j = 16; j < 68; ++j)
{
int wj3 = this.W[j - 3];
int r15 = ((wj3 << 15) | (wj3 >>> (32 - 15)));
int wj13 = this.W[j - 13];
int r7 = ((wj13 << 7) | (wj13 >>> (32 - 7)));
this.W[j] = P1(this.W[j - 16] ^ this.W[j - 9] ^ r15) ^ r7 ^ this.W[j - 6];
}
for (int j = 0; j < 64; ++j)
{
this.W1[j] = this.W[j] ^ this.W[j + 4];
}
int A = this.V[0];
int B = this.V[1];
int C = this.V[2];
int D = this.V[3];
int E = this.V[4];
int F = this.V[5];
int G = this.V[6];
int H = this.V[7];
for (int j = 0; j < 16; ++j)
{
int a12 = ((A << 12) | (A >>> (32 - 12)));
int s1_ = a12 + E + T[j];
int SS1 = ((s1_ << 7) | (s1_ >>> (32 - 7)));
int SS2 = SS1 ^ a12;
int TT1 = FF0(A, B, C) + D + SS2 + this.W1[j];
int TT2 = GG0(E, F, G) + H + SS1 + this.W[j];
D = C;
C = ((B << 9) | (B >>> (32 - 9)));
B = A;
A = TT1;
H = G;
G = ((F << 19) | (F >>> (32 - 19)));
F = E;
E = P0(TT2);
}
// Different FF,GG functions on rounds 16..63
for (int j = 16; j < 64; ++j)
{
int a12 = ((A << 12) | (A >>> (32 - 12)));
int s1_ = a12 + E + T[j];
int SS1 = ((s1_ << 7) | (s1_ >>> (32 - 7)));
int SS2 = SS1 ^ a12;
int TT1 = FF1(A, B, C) + D + SS2 + this.W1[j];
int TT2 = GG1(E, F, G) + H + SS1 + this.W[j];
D = C;
C = ((B << 9) | (B >>> (32 - 9)));
B = A;
A = TT1;
H = G;
G = ((F << 19) | (F >>> (32 - 19)));
F = E;
E = P0(TT2);
}
this.V[0] ^= A;
this.V[1] ^= B;
this.V[2] ^= C;
this.V[3] ^= D;
this.V[4] ^= E;
this.V[5] ^= F;
this.V[6] ^= G;
this.V[7] ^= H;
this.xOff = 0;
}
}