org.threeten.bp.format.DateTimeFormatterBuilder Maven / Gradle / Ivy
Show all versions of threetenbp Show documentation
/*
* Copyright (c) 2007-present, Stephen Colebourne & Michael Nascimento Santos
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of JSR-310 nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.threeten.bp.format;
import static org.threeten.bp.temporal.ChronoField.DAY_OF_MONTH;
import static org.threeten.bp.temporal.ChronoField.HOUR_OF_DAY;
import static org.threeten.bp.temporal.ChronoField.INSTANT_SECONDS;
import static org.threeten.bp.temporal.ChronoField.MINUTE_OF_HOUR;
import static org.threeten.bp.temporal.ChronoField.MONTH_OF_YEAR;
import static org.threeten.bp.temporal.ChronoField.NANO_OF_SECOND;
import static org.threeten.bp.temporal.ChronoField.OFFSET_SECONDS;
import static org.threeten.bp.temporal.ChronoField.SECOND_OF_MINUTE;
import static org.threeten.bp.temporal.ChronoField.YEAR;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.AbstractMap.SimpleImmutableEntry;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Locale;
import java.util.Map;
import java.util.Map.Entry;
import java.util.MissingResourceException;
import java.util.ResourceBundle;
import java.util.Set;
import java.util.TimeZone;
import java.util.TreeMap;
import org.threeten.bp.DateTimeException;
import org.threeten.bp.Instant;
import org.threeten.bp.LocalDate;
import org.threeten.bp.LocalDateTime;
import org.threeten.bp.ZoneId;
import org.threeten.bp.ZoneOffset;
import org.threeten.bp.chrono.ChronoLocalDate;
import org.threeten.bp.chrono.Chronology;
import org.threeten.bp.format.SimpleDateTimeTextProvider.LocaleStore;
import org.threeten.bp.jdk8.Jdk8Methods;
import org.threeten.bp.temporal.ChronoField;
import org.threeten.bp.temporal.IsoFields;
import org.threeten.bp.temporal.TemporalAccessor;
import org.threeten.bp.temporal.TemporalField;
import org.threeten.bp.temporal.TemporalQueries;
import org.threeten.bp.temporal.TemporalQuery;
import org.threeten.bp.temporal.ValueRange;
import org.threeten.bp.temporal.WeekFields;
import org.threeten.bp.zone.ZoneRulesProvider;
/**
* Builder to create date-time formatters.
*
* This allows a {@code DateTimeFormatter} to be created.
* All date-time formatters are created ultimately using this builder.
*
* The basic elements of date-time can all be added:
*
* - Value - a numeric value
* - Fraction - a fractional value including the decimal place. Always use this when
* outputting fractions to ensure that the fraction is parsed correctly
* - Text - the textual equivalent for the value
* - OffsetId/Offset - the {@linkplain ZoneOffset zone offset}
* - ZoneId - the {@linkplain ZoneId time-zone} id
* - ZoneText - the name of the time-zone
* - Literal - a text literal
* - Nested and Optional - formats can be nested or made optional
* - Other - the printer and parser interfaces can be used to add user supplied formatting
*
* In addition, any of the elements may be decorated by padding, either with spaces or any other character.
*
* Finally, a shorthand pattern, mostly compatible with {@code java.text.SimpleDateFormat SimpleDateFormat}
* can be used, see {@link #appendPattern(String)}.
* In practice, this simply parses the pattern and calls other methods on the builder.
*
*
Specification for implementors
* This class is a mutable builder intended for use from a single thread.
*/
public final class DateTimeFormatterBuilder {
/**
* Query for a time-zone that is region-only.
*/
private static final TemporalQuery QUERY_REGION_ONLY = new TemporalQuery() {
public ZoneId queryFrom(TemporalAccessor temporal) {
ZoneId zone = temporal.query(TemporalQueries.zoneId());
return (zone != null && zone instanceof ZoneOffset == false ? zone : null);
}
};
/**
* The currently active builder, used by the outermost builder.
*/
private DateTimeFormatterBuilder active = this;
/**
* The parent builder, null for the outermost builder.
*/
private final DateTimeFormatterBuilder parent;
/**
* The list of printers that will be used.
*/
private final List printerParsers = new ArrayList();
/**
* Whether this builder produces an optional formatter.
*/
private final boolean optional;
/**
* The width to pad the next field to.
*/
private int padNextWidth;
/**
* The character to pad the next field with.
*/
private char padNextChar;
/**
* The index of the last variable width value parser.
*/
private int valueParserIndex = -1;
/**
* Gets the formatting pattern for date and time styles for a locale and chronology.
* The locale and chronology are used to lookup the locale specific format
* for the requested dateStyle and/or timeStyle.
*
* @param dateStyle the FormatStyle for the date
* @param timeStyle the FormatStyle for the time
* @param chrono the Chronology, non-null
* @param locale the locale, non-null
* @return the locale and Chronology specific formatting pattern
* @throws IllegalArgumentException if both dateStyle and timeStyle are null
*/
public static String getLocalizedDateTimePattern(
FormatStyle dateStyle, FormatStyle timeStyle, Chronology chrono, Locale locale) {
Jdk8Methods.requireNonNull(locale, "locale");
Jdk8Methods.requireNonNull(chrono, "chrono");
if (dateStyle == null && timeStyle == null) {
throw new IllegalArgumentException("Either dateStyle or timeStyle must be non-null");
}
DateFormat dateFormat;
if (dateStyle != null) {
if (timeStyle != null) {
dateFormat = DateFormat.getDateTimeInstance(dateStyle.ordinal(), timeStyle.ordinal(), locale);
} else {
dateFormat = DateFormat.getDateInstance(dateStyle.ordinal(), locale);
}
} else {
dateFormat = DateFormat.getTimeInstance(timeStyle.ordinal(), locale);
}
if (dateFormat instanceof SimpleDateFormat) {
return ((SimpleDateFormat) dateFormat).toPattern();
}
throw new IllegalArgumentException("Unable to determine pattern");
}
//-------------------------------------------------------------------------
/**
* Constructs a new instance of the builder.
*/
public DateTimeFormatterBuilder() {
super();
parent = null;
optional = false;
}
/**
* Constructs a new instance of the builder.
*
* @param parent the parent builder, not null
* @param optional whether the formatter is optional, not null
*/
private DateTimeFormatterBuilder(DateTimeFormatterBuilder parent, boolean optional) {
super();
this.parent = parent;
this.optional = optional;
}
//-----------------------------------------------------------------------
/**
* Changes the parse style to be case sensitive for the remainder of the formatter.
*
* Parsing can be case sensitive or insensitive - by default it is case sensitive.
* This method allows the case sensitivity setting of parsing to be changed.
*
* Calling this method changes the state of the builder such that all
* subsequent builder method calls will parse text in case sensitive mode.
* See {@link #parseCaseInsensitive} for the opposite setting.
* The parse case sensitive/insensitive methods may be called at any point
* in the builder, thus the parser can swap between case parsing modes
* multiple times during the parse.
*
* Since the default is case sensitive, this method should only be used after
* a previous call to {@code #parseCaseInsensitive}.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder parseCaseSensitive() {
appendInternal(SettingsParser.SENSITIVE);
return this;
}
/**
* Changes the parse style to be case insensitive for the remainder of the formatter.
*
* Parsing can be case sensitive or insensitive - by default it is case sensitive.
* This method allows the case sensitivity setting of parsing to be changed.
*
* Calling this method changes the state of the builder such that all
* subsequent builder method calls will parse text in case sensitive mode.
* See {@link #parseCaseSensitive()} for the opposite setting.
* The parse case sensitive/insensitive methods may be called at any point
* in the builder, thus the parser can swap between case parsing modes
* multiple times during the parse.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder parseCaseInsensitive() {
appendInternal(SettingsParser.INSENSITIVE);
return this;
}
//-----------------------------------------------------------------------
/**
* Changes the parse style to be strict for the remainder of the formatter.
*
* Parsing can be strict or lenient - by default its strict.
* This controls the degree of flexibility in matching the text and sign styles.
*
* When used, this method changes the parsing to be strict from this point onwards.
* As strict is the default, this is normally only needed after calling {@link #parseLenient()}.
* The change will remain in force until the end of the formatter that is eventually
* constructed or until {@code parseLenient} is called.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder parseStrict() {
appendInternal(SettingsParser.STRICT);
return this;
}
/**
* Changes the parse style to be lenient for the remainder of the formatter.
* Note that case sensitivity is set separately to this method.
*
* Parsing can be strict or lenient - by default its strict.
* This controls the degree of flexibility in matching the text and sign styles.
* Applications calling this method should typically also call {@link #parseCaseInsensitive()}.
*
* When used, this method changes the parsing to be strict from this point onwards.
* The change will remain in force until the end of the formatter that is eventually
* constructed or until {@code parseStrict} is called.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder parseLenient() {
appendInternal(SettingsParser.LENIENT);
return this;
}
//-----------------------------------------------------------------------
/**
* Appends a default value for a field to the formatter for use in parsing.
*
* This appends an instruction to the builder to inject a default value
* into the parsed result. This is especially useful in conjunction with
* optional parts of the formatter.
*
* For example, consider a formatter that parses the year, followed by
* an optional month, with a further optional day-of-month. Using such a
* formatter would require the calling code to check whether a full date,
* year-month or just a year had been parsed. This method can be used to
* default the month and day-of-month to a sensible value, such as the
* first of the month, allowing the calling code to always get a date.
*
* During formatting, this method has no effect.
*
* During parsing, the current state of the parse is inspected.
* If the specified field has no associated value, because it has not been
* parsed successfully at that point, then the specified value is injected
* into the parse result. Injection is immediate, thus the field-value pair
* will be visible to any subsequent elements in the formatter.
* As such, this method is normally called at the end of the builder.
*
* @param field the field to default the value of, not null
* @param value the value to default the field to
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder parseDefaulting(TemporalField field, long value) {
Jdk8Methods.requireNonNull(field, "field");
appendInternal(new DefaultingParser(field, value));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the value of a date-time field to the formatter using a normal
* output style.
*
* The value of the field will be output during a print.
* If the value cannot be obtained then an exception will be thrown.
*
* The value will be printed as per the normal print of an integer value.
* Only negative numbers will be signed. No padding will be added.
*
* The parser for a variable width value such as this normally behaves greedily,
* requiring one digit, but accepting as many digits as possible.
* This behavior can be affected by 'adjacent value parsing'.
* See {@link #appendValue(TemporalField, int)} for full details.
*
* @param field the field to append, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendValue(TemporalField field) {
Jdk8Methods.requireNonNull(field, "field");
appendValue(new NumberPrinterParser(field, 1, 19, SignStyle.NORMAL));
return this;
}
/**
* Appends the value of a date-time field to the formatter using a fixed
* width, zero-padded approach.
*
* The value of the field will be output during a print.
* If the value cannot be obtained then an exception will be thrown.
*
* The value will be zero-padded on the left. If the size of the value
* means that it cannot be printed within the width then an exception is thrown.
* If the value of the field is negative then an exception is thrown during printing.
*
* This method supports a special technique of parsing known as 'adjacent value parsing'.
* This technique solves the problem where a variable length value is followed by one or more
* fixed length values. The standard parser is greedy, and thus it would normally
* steal the digits that are needed by the fixed width value parsers that follow the
* variable width one.
*
* No action is required to initiate 'adjacent value parsing'.
* When a call to {@code appendValue} with a variable width is made, the builder
* enters adjacent value parsing setup mode. If the immediately subsequent method
* call or calls on the same builder are to this method, then the parser will reserve
* space so that the fixed width values can be parsed.
*
* For example, consider {@code builder.appendValue(YEAR).appendValue(MONTH_OF_YEAR, 2);}
* The year is a variable width parse of between 1 and 19 digits.
* The month is a fixed width parse of 2 digits.
* Because these were appended to the same builder immediately after one another,
* the year parser will reserve two digits for the month to parse.
* Thus, the text '201106' will correctly parse to a year of 2011 and a month of 6.
* Without adjacent value parsing, the year would greedily parse all six digits and leave
* nothing for the month.
*
* Adjacent value parsing applies to each set of fixed width not-negative values in the parser
* that immediately follow any kind of variable width value.
* Calling any other append method will end the setup of adjacent value parsing.
* Thus, in the unlikely event that you need to avoid adjacent value parsing behavior,
* simply add the {@code appendValue} to another {@code DateTimeFormatterBuilder}
* and add that to this builder.
*
* If adjacent parsing is active, then parsing must match exactly the specified
* number of digits in both strict and lenient modes.
* In addition, no positive or negative sign is permitted.
*
* @param field the field to append, not null
* @param width the width of the printed field, from 1 to 19
* @return this, for chaining, not null
* @throws IllegalArgumentException if the width is invalid
*/
public DateTimeFormatterBuilder appendValue(TemporalField field, int width) {
Jdk8Methods.requireNonNull(field, "field");
if (width < 1 || width > 19) {
throw new IllegalArgumentException("The width must be from 1 to 19 inclusive but was " + width);
}
NumberPrinterParser pp = new NumberPrinterParser(field, width, width, SignStyle.NOT_NEGATIVE);
appendValue(pp);
return this;
}
/**
* Appends the value of a date-time field to the formatter providing full
* control over printing.
*
* The value of the field will be output during a print.
* If the value cannot be obtained then an exception will be thrown.
*
* This method provides full control of the numeric formatting, including
* zero-padding and the positive/negative sign.
*
* The parser for a variable width value such as this normally behaves greedily,
* accepting as many digits as possible.
* This behavior can be affected by 'adjacent value parsing'.
* See {@link #appendValue(TemporalField, int)} for full details.
*
* In strict parsing mode, the minimum number of parsed digits is {@code minWidth}.
* In lenient parsing mode, the minimum number of parsed digits is one.
*
* If this method is invoked with equal minimum and maximum widths and a sign style of
* {@code NOT_NEGATIVE} then it delegates to {@code appendValue(TemporalField,int)}.
* In this scenario, the printing and parsing behavior described there occur.
*
* @param field the field to append, not null
* @param minWidth the minimum field width of the printed field, from 1 to 19
* @param maxWidth the maximum field width of the printed field, from 1 to 19
* @param signStyle the positive/negative output style, not null
* @return this, for chaining, not null
* @throws IllegalArgumentException if the widths are invalid
*/
public DateTimeFormatterBuilder appendValue(
TemporalField field, int minWidth, int maxWidth, SignStyle signStyle) {
if (minWidth == maxWidth && signStyle == SignStyle.NOT_NEGATIVE) {
return appendValue(field, maxWidth);
}
Jdk8Methods.requireNonNull(field, "field");
Jdk8Methods.requireNonNull(signStyle, "signStyle");
if (minWidth < 1 || minWidth > 19) {
throw new IllegalArgumentException("The minimum width must be from 1 to 19 inclusive but was " + minWidth);
}
if (maxWidth < 1 || maxWidth > 19) {
throw new IllegalArgumentException("The maximum width must be from 1 to 19 inclusive but was " + maxWidth);
}
if (maxWidth < minWidth) {
throw new IllegalArgumentException("The maximum width must exceed or equal the minimum width but " +
maxWidth + " < " + minWidth);
}
NumberPrinterParser pp = new NumberPrinterParser(field, minWidth, maxWidth, signStyle);
appendValue(pp);
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the reduced value of a date-time field to the formatter.
*
* Since fields such as year vary by chronology, it is recommended to use the
* {@link #appendValueReduced(TemporalField, int, int, ChronoLocalDate)} date}
* variant of this method in most cases. This variant is suitable for
* simple fields or working with only the ISO chronology.
*
* For formatting, the {@code width} and {@code maxWidth} are used to
* determine the number of characters to format.
* If they are equal then the format is fixed width.
* If the value of the field is within the range of the {@code baseValue} using
* {@code width} characters then the reduced value is formatted otherwise the value is
* truncated to fit {@code maxWidth}.
* The rightmost characters are output to match the width, left padding with zero.
*
* For strict parsing, the number of characters allowed by {@code width} to {@code maxWidth} are parsed.
* For lenient parsing, the number of characters must be at least 1 and less than 10.
* If the number of digits parsed is equal to {@code width} and the value is positive,
* the value of the field is computed to be the first number greater than
* or equal to the {@code baseValue} with the same least significant characters,
* otherwise the value parsed is the field value.
* This allows a reduced value to be entered for values in range of the baseValue
* and width and absolute values can be entered for values outside the range.
*
* For example, a base value of {@code 1980} and a width of {@code 2} will have
* valid values from {@code 1980} to {@code 2079}.
* During parsing, the text {@code "12"} will result in the value {@code 2012} as that
* is the value within the range where the last two characters are "12".
* By contrast, parsing the text {@code "1915"} will result in the value {@code 1915}.
*
* @param field the field to append, not null
* @param width the field width of the printed and parsed field, from 1 to 10
* @param maxWidth the maximum field width of the printed field, from 1 to 10
* @param baseValue the base value of the range of valid values
* @return this, for chaining, not null
* @throws IllegalArgumentException if the width or base value is invalid
*/
public DateTimeFormatterBuilder appendValueReduced(TemporalField field,
int width, int maxWidth, int baseValue) {
Jdk8Methods.requireNonNull(field, "field");
ReducedPrinterParser pp = new ReducedPrinterParser(field, width, maxWidth, baseValue, null);
appendValue(pp);
return this;
}
/**
* Appends the reduced value of a date-time field to the formatter.
*
* This is typically used for formatting and parsing a two digit year.
*
* The base date is used to calculate the full value during parsing.
* For example, if the base date is 1950-01-01 then parsed values for
* a two digit year parse will be in the range 1950-01-01 to 2049-12-31.
* Only the year would be extracted from the date, thus a base date of
* 1950-08-25 would also parse to the range 1950-01-01 to 2049-12-31.
* This behavior is necessary to support fields such as week-based-year
* or other calendar systems where the parsed value does not align with
* standard ISO years.
*
* The exact behavior is as follows. Parse the full set of fields and
* determine the effective chronology using the last chronology if
* it appears more than once. Then convert the base date to the
* effective chronology. Then extract the specified field from the
* chronology-specific base date and use it to determine the
* {@code baseValue} used below.
*
* For formatting, the {@code width} and {@code maxWidth} are used to
* determine the number of characters to format.
* If they are equal then the format is fixed width.
* If the value of the field is within the range of the {@code baseValue} using
* {@code width} characters then the reduced value is formatted otherwise the value is
* truncated to fit {@code maxWidth}.
* The rightmost characters are output to match the width, left padding with zero.
*
* For strict parsing, the number of characters allowed by {@code width} to {@code maxWidth} are parsed.
* For lenient parsing, the number of characters must be at least 1 and less than 10.
* If the number of digits parsed is equal to {@code width} and the value is positive,
* the value of the field is computed to be the first number greater than
* or equal to the {@code baseValue} with the same least significant characters,
* otherwise the value parsed is the field value.
* This allows a reduced value to be entered for values in range of the baseValue
* and width and absolute values can be entered for values outside the range.
*
* For example, a base value of {@code 1980} and a width of {@code 2} will have
* valid values from {@code 1980} to {@code 2079}.
* During parsing, the text {@code "12"} will result in the value {@code 2012} as that
* is the value within the range where the last two characters are "12".
* By contrast, parsing the text {@code "1915"} will result in the value {@code 1915}.
*
* @param field the field to append, not null
* @param width the field width of the printed and parsed field, from 1 to 10
* @param maxWidth the maximum field width of the printed field, from 1 to 10
* @param baseDate the base date used to calculate the base value for the range
* of valid values in the parsed chronology, not null
* @return this, for chaining, not null
* @throws IllegalArgumentException if the width or base value is invalid
*/
public DateTimeFormatterBuilder appendValueReduced(
TemporalField field, int width, int maxWidth, ChronoLocalDate baseDate) {
Jdk8Methods.requireNonNull(field, "field");
Jdk8Methods.requireNonNull(baseDate, "baseDate");
ReducedPrinterParser pp = new ReducedPrinterParser(field, width, maxWidth, 0, baseDate);
appendValue(pp);
return this;
}
/**
* Appends a fixed width printer-parser.
*
* @param width the width
* @param pp the printer-parser, not null
* @return this, for chaining, not null
*/
private DateTimeFormatterBuilder appendValue(NumberPrinterParser pp) {
if (active.valueParserIndex >= 0 &&
active.printerParsers.get(active.valueParserIndex) instanceof NumberPrinterParser) {
final int activeValueParser = active.valueParserIndex;
// adjacent parsing mode, update setting in previous parsers
NumberPrinterParser basePP = (NumberPrinterParser) active.printerParsers.get(activeValueParser);
if (pp.minWidth == pp.maxWidth && pp.signStyle == SignStyle.NOT_NEGATIVE) {
// Append the width to the subsequentWidth of the active parser
basePP = basePP.withSubsequentWidth(pp.maxWidth);
// Append the new parser as a fixed width
appendInternal(pp.withFixedWidth());
// Retain the previous active parser
active.valueParserIndex = activeValueParser;
} else {
// Modify the active parser to be fixed width
basePP = basePP.withFixedWidth();
// The new parser becomes the mew active parser
active.valueParserIndex = appendInternal(pp);
}
// Replace the modified parser with the updated one
active.printerParsers.set(activeValueParser, basePP);
} else {
// The new Parser becomes the active parser
active.valueParserIndex = appendInternal(pp);
}
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the fractional value of a date-time field to the formatter.
*
* The fractional value of the field will be output including the
* preceding decimal point. The preceding value is not output.
* For example, the second-of-minute value of 15 would be output as {@code .25}.
*
* The width of the printed fraction can be controlled. Setting the
* minimum width to zero will cause no output to be generated.
* The printed fraction will have the minimum width necessary between
* the minimum and maximum widths - trailing zeroes are omitted.
* No rounding occurs due to the maximum width - digits are simply dropped.
*
* When parsing in strict mode, the number of parsed digits must be between
* the minimum and maximum width. When parsing in lenient mode, the minimum
* width is considered to be zero and the maximum is nine.
*
* If the value cannot be obtained then an exception will be thrown.
* If the value is negative an exception will be thrown.
* If the field does not have a fixed set of valid values then an
* exception will be thrown.
* If the field value in the date-time to be printed is invalid it
* cannot be printed and an exception will be thrown.
*
* @param field the field to append, not null
* @param minWidth the minimum width of the field excluding the decimal point, from 0 to 9
* @param maxWidth the maximum width of the field excluding the decimal point, from 1 to 9
* @param decimalPoint whether to output the localized decimal point symbol
* @return this, for chaining, not null
* @throws IllegalArgumentException if the field has a variable set of valid values or
* either width is invalid
*/
public DateTimeFormatterBuilder appendFraction(
TemporalField field, int minWidth, int maxWidth, boolean decimalPoint) {
appendInternal(new FractionPrinterParser(field, minWidth, maxWidth, decimalPoint));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the text of a date-time field to the formatter using the full
* text style.
*
* The text of the field will be output during a print.
* The value must be within the valid range of the field.
* If the value cannot be obtained then an exception will be thrown.
* If the field has no textual representation, then the numeric value will be used.
*
* The value will be printed as per the normal print of an integer value.
* Only negative numbers will be signed. No padding will be added.
*
* @param field the field to append, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendText(TemporalField field) {
return appendText(field, TextStyle.FULL);
}
/**
* Appends the text of a date-time field to the formatter.
*
* The text of the field will be output during a print.
* The value must be within the valid range of the field.
* If the value cannot be obtained then an exception will be thrown.
* If the field has no textual representation, then the numeric value will be used.
*
* The value will be printed as per the normal print of an integer value.
* Only negative numbers will be signed. No padding will be added.
*
* @param field the field to append, not null
* @param textStyle the text style to use, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendText(TemporalField field, TextStyle textStyle) {
Jdk8Methods.requireNonNull(field, "field");
Jdk8Methods.requireNonNull(textStyle, "textStyle");
appendInternal(new TextPrinterParser(field, textStyle, DateTimeTextProvider.getInstance()));
return this;
}
/**
* Appends the text of a date-time field to the formatter using the specified
* map to supply the text.
*
* The standard text outputting methods use the localized text in the JDK.
* This method allows that text to be specified directly.
* The supplied map is not validated by the builder to ensure that printing or
* parsing is possible, thus an invalid map may throw an error during later use.
*
* Supplying the map of text provides considerable flexibility in printing and parsing.
* For example, a legacy application might require or supply the months of the
* year as "JNY", "FBY", "MCH" etc. These do not match the standard set of text
* for localized month names. Using this method, a map can be created which
* defines the connection between each value and the text:
*
* Map<Long, String> map = new HashMap<>();
* map.put(1, "JNY");
* map.put(2, "FBY");
* map.put(3, "MCH");
* ...
* builder.appendText(MONTH_OF_YEAR, map);
*
*
* Other uses might be to output the value with a suffix, such as "1st", "2nd", "3rd",
* or as Roman numerals "I", "II", "III", "IV".
*
* During printing, the value is obtained and checked that it is in the valid range.
* If text is not available for the value then it is output as a number.
* During parsing, the parser will match against the map of text and numeric values.
*
* @param field the field to append, not null
* @param textLookup the map from the value to the text
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendText(TemporalField field, Map textLookup) {
Jdk8Methods.requireNonNull(field, "field");
Jdk8Methods.requireNonNull(textLookup, "textLookup");
Map copy = new LinkedHashMap(textLookup);
Map> map = Collections.singletonMap(TextStyle.FULL, copy);
final LocaleStore store = new LocaleStore(map);
DateTimeTextProvider provider = new DateTimeTextProvider() {
@Override
public String getText(TemporalField field, long value, TextStyle style, Locale locale) {
return store.getText(value, style);
}
@Override
public Iterator> getTextIterator(TemporalField field, TextStyle style, Locale locale) {
return store.getTextIterator(style);
}
};
appendInternal(new TextPrinterParser(field, TextStyle.FULL, provider));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends an instant using ISO-8601 to the formatter, formatting fractional
* digits in groups of three.
*
* Instants have a fixed output format.
* They are converted to a date-time with a zone-offset of UTC and formatted
* using the standard ISO-8601 format.
* With this method, formatting nano-of-second outputs zero, three, six
* or nine digits digits as necessary.
* The localized decimal style is not used.
*
* The instant is obtained using {@link ChronoField#INSTANT_SECONDS INSTANT_SECONDS}
* and optionally (@code NANO_OF_SECOND). The value of {@code INSTANT_SECONDS}
* may be outside the maximum range of {@code LocalDateTime}.
*
* The {@linkplain ResolverStyle resolver style} has no effect on instant parsing.
* The end-of-day time of '24:00' is handled as midnight at the start of the following day.
* The leap-second time of '23:59:59' is handled to some degree, see
* {@link DateTimeFormatter#parsedLeapSecond()} for full details.
*
* An alternative to this method is to format/parse the instant as a single
* epoch-seconds value. That is achieved using {@code appendValue(INSTANT_SECONDS)}.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendInstant() {
appendInternal(new InstantPrinterParser(-2));
return this;
}
/**
* Appends an instant using ISO-8601 to the formatter with control over
* the number of fractional digits.
*
* Instants have a fixed output format, although this method provides some
* control over the fractional digits. They are converted to a date-time
* with a zone-offset of UTC and printed using the standard ISO-8601 format.
* The localized decimal style is not used.
*
* The {@code fractionalDigits} parameter allows the output of the fractional
* second to be controlled. Specifying zero will cause no fractional digits
* to be output. From 1 to 9 will output an increasing number of digits, using
* zero right-padding if necessary. The special value -1 is used to output as
* many digits as necessary to avoid any trailing zeroes.
*
* When parsing in strict mode, the number of parsed digits must match the
* fractional digits. When parsing in lenient mode, any number of fractional
* digits from zero to nine are accepted.
*
* The instant is obtained using {@link ChronoField#INSTANT_SECONDS INSTANT_SECONDS}
* and optionally (@code NANO_OF_SECOND). The value of {@code INSTANT_SECONDS}
* may be outside the maximum range of {@code LocalDateTime}.
*
* The {@linkplain ResolverStyle resolver style} has no effect on instant parsing.
* The end-of-day time of '24:00' is handled as midnight at the start of the following day.
* The leap-second time of '23:59:59' is handled to some degree, see
* {@link DateTimeFormatter#parsedLeapSecond()} for full details.
*
* An alternative to this method is to format/parse the instant as a single
* epoch-seconds value. That is achieved using {@code appendValue(INSTANT_SECONDS)}.
*
* @param fractionalDigits the number of fractional second digits to format with,
* from 0 to 9, or -1 to use as many digits as necessary
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendInstant(int fractionalDigits) {
if (fractionalDigits < -1 || fractionalDigits > 9) {
throw new IllegalArgumentException("Invalid fractional digits: " + fractionalDigits);
}
appendInternal(new InstantPrinterParser(fractionalDigits));
return this;
}
/**
* Appends the zone offset, such as '+01:00', to the formatter.
*
* This appends an instruction to print/parse the offset ID to the builder.
* This is equivalent to calling {@code appendOffset("HH:MM:ss", "Z")}.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendOffsetId() {
appendInternal(OffsetIdPrinterParser.INSTANCE_ID);
return this;
}
/**
* Appends the zone offset, such as '+01:00', to the formatter.
*
* This appends an instruction to print/parse the offset ID to the builder.
*
* During printing, the offset is obtained using a mechanism equivalent
* to querying the temporal with {@link TemporalQueries#offset()}.
* It will be printed using the format defined below.
* If the offset cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
*
* During parsing, the offset is parsed using the format defined below.
* If the offset cannot be parsed then an exception is thrown unless the
* section of the formatter is optional.
*
* The format of the offset is controlled by a pattern which must be one
* of the following:
*
* - {@code +HH} - hour only, ignoring minute and second
*
- {@code +HHmm} - hour, with minute if non-zero, ignoring second, no colon
*
- {@code +HH:mm} - hour, with minute if non-zero, ignoring second, with colon
*
- {@code +HHMM} - hour and minute, ignoring second, no colon
*
- {@code +HH:MM} - hour and minute, ignoring second, with colon
*
- {@code +HHMMss} - hour and minute, with second if non-zero, no colon
*
- {@code +HH:MM:ss} - hour and minute, with second if non-zero, with colon
*
- {@code +HHMMSS} - hour, minute and second, no colon
*
- {@code +HH:MM:SS} - hour, minute and second, with colon
*
* The "no offset" text controls what text is printed when the total amount of
* the offset fields to be output is zero.
* Example values would be 'Z', '+00:00', 'UTC' or 'GMT'.
* Three formats are accepted for parsing UTC - the "no offset" text, and the
* plus and minus versions of zero defined by the pattern.
*
* @param pattern the pattern to use, not null
* @param noOffsetText the text to use when the offset is zero, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendOffset(String pattern, String noOffsetText) {
appendInternal(new OffsetIdPrinterParser(noOffsetText, pattern));
return this;
}
/**
* Appends the localized zone offset, such as 'GMT+01:00', to the formatter.
*
* This appends a localized zone offset to the builder, the format of the
* localized offset is controlled by the specified {@link FormatStyle style}
* to this method:
*
* - {@link TextStyle#FULL full} - formats with localized offset text, such
* as 'GMT, 2-digit hour and minute field, optional second field if non-zero,
* and colon.
*
- {@link TextStyle#SHORT short} - formats with localized offset text,
* such as 'GMT, hour without leading zero, optional 2-digit minute and
* second if non-zero, and colon.
*
*
* During formatting, the offset is obtained using a mechanism equivalent
* to querying the temporal with {@link TemporalQueries#offset()}.
* If the offset cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
*
* During parsing, the offset is parsed using the format defined above.
* If the offset cannot be parsed then an exception is thrown unless the
* section of the formatter is optional.
*
* @param style the format style to use, not null
* @return this, for chaining, not null
* @throws IllegalArgumentException if style is neither {@link TextStyle#FULL
* full} nor {@link TextStyle#SHORT short}
*/
public DateTimeFormatterBuilder appendLocalizedOffset(TextStyle style) {
Jdk8Methods.requireNonNull(style, "style");
if (style != TextStyle.FULL && style != TextStyle.SHORT) {
throw new IllegalArgumentException("Style must be either full or short");
}
appendInternal(new LocalizedOffsetPrinterParser(style));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the time-zone ID, such as 'Europe/Paris' or '+02:00', to the formatter.
*
* This appends an instruction to print/parse the zone ID to the builder.
* The zone ID is obtained in a strict manner suitable for {@code ZonedDateTime}.
* By contrast, {@code OffsetDateTime} does not have a zone ID suitable
* for use with this method, see {@link #appendZoneOrOffsetId()}.
*
* During printing, the zone is obtained using a mechanism equivalent
* to querying the temporal with {@link TemporalQueries#zoneId()}.
* It will be printed using the result of {@link ZoneId#getId()}.
* If the zone cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
*
* During parsing, the zone is parsed and must match a known zone or offset.
* If the zone cannot be parsed then an exception is thrown unless the
* section of the formatter is optional.
*
* @return this, for chaining, not null
* @see #appendZoneRegionId()
*/
public DateTimeFormatterBuilder appendZoneId() {
appendInternal(new ZoneIdPrinterParser(TemporalQueries.zoneId(), "ZoneId()"));
return this;
}
/**
* Appends the time-zone region ID, such as 'Europe/Paris', to the formatter,
* rejecting the zone ID if it is a {@code ZoneOffset}.
*
* This appends an instruction to print/parse the zone ID to the builder
* only if it is a region-based ID.
*
* During printing, the zone is obtained using a mechanism equivalent
* to querying the temporal with {@link TemporalQueries#zoneId()}.
* If the zone is a {@code ZoneOffset} or it cannot be obtained then
* an exception is thrown unless the section of the formatter is optional.
* If the zone is not an offset, then the zone will be printed using
* the zone ID from {@link ZoneId#getId()}.
*
* During parsing, the zone is parsed and must match a known zone or offset.
* If the zone cannot be parsed then an exception is thrown unless the
* section of the formatter is optional.
* Note that parsing accepts offsets, whereas printing will never produce
* one, thus parsing is equivalent to {@code appendZoneId}.
*
* @return this, for chaining, not null
* @see #appendZoneId()
*/
public DateTimeFormatterBuilder appendZoneRegionId() {
appendInternal(new ZoneIdPrinterParser(QUERY_REGION_ONLY, "ZoneRegionId()"));
return this;
}
/**
* Appends the time-zone ID, such as 'Europe/Paris' or '+02:00', to
* the formatter, using the best available zone ID.
*
* This appends an instruction to print/parse the best available
* zone or offset ID to the builder.
* The zone ID is obtained in a lenient manner that first attempts to
* find a true zone ID, such as that on {@code ZonedDateTime}, and
* then attempts to find an offset, such as that on {@code OffsetDateTime}.
*
* During printing, the zone is obtained using a mechanism equivalent
* to querying the temporal with {@link TemporalQueries#zone()}.
* It will be printed using the result of {@link ZoneId#getId()}.
* If the zone cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
*
* During parsing, the zone is parsed and must match a known zone or offset.
* If the zone cannot be parsed then an exception is thrown unless the
* section of the formatter is optional.
*
* This method is is identical to {@code appendZoneId()} except in the
* mechanism used to obtain the zone.
*
* @return this, for chaining, not null
* @see #appendZoneId()
*/
public DateTimeFormatterBuilder appendZoneOrOffsetId() {
appendInternal(new ZoneIdPrinterParser(TemporalQueries.zone(), "ZoneOrOffsetId()"));
return this;
}
/**
* Appends the time-zone name, such as 'British Summer Time', to the formatter.
*
* This appends an instruction to print the textual name of the zone to the builder.
*
* During printing, the zone is obtained using a mechanism equivalent
* to querying the temporal with {@link TemporalQueries#zoneId()}.
* If the zone is a {@code ZoneOffset} it will be printed using the
* result of {@link ZoneOffset#getId()}.
* If the zone is not an offset, the textual name will be looked up
* for the locale set in the {@link DateTimeFormatter}.
* If the temporal object being printed represents an instant, then the text
* will be the summer or winter time text as appropriate.
* If the lookup for text does not find any suitable reuslt, then the
* {@link ZoneId#getId() ID} will be printed instead.
* If the zone cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
*
* Parsing is not currently supported.
*
* @param textStyle the text style to use, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendZoneText(TextStyle textStyle) {
appendInternal(new ZoneTextPrinterParser(textStyle));
return this;
}
/**
* Appends the time-zone name, such as 'British Summer Time', to the formatter.
*
* This appends an instruction to format/parse the textual name of the zone to
* the builder.
*
* During formatting, the zone is obtained using a mechanism equivalent
* to querying the temporal with {@link TemporalQueries#zoneId()}.
* If the zone is a {@code ZoneOffset} it will be printed using the
* result of {@link ZoneOffset#getId()}.
* If the zone is not an offset, the textual name will be looked up
* for the locale set in the {@link DateTimeFormatter}.
* If the temporal object being printed represents an instant, then the text
* will be the summer or winter time text as appropriate.
* If the lookup for text does not find any suitable result, then the
* {@link ZoneId#getId() ID} will be printed instead.
* If the zone cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
*
* During parsing, either the textual zone name, the zone ID or the offset
* is accepted. Many textual zone names are not unique, such as CST can be
* for both "Central Standard Time" and "China Standard Time". In this
* situation, the zone id will be determined by the region information from
* formatter's {@link DateTimeFormatter#getLocale() locale} and the standard
* zone id for that area, for example, America/New_York for the America Eastern
* zone. This method also allows a set of preferred {@link ZoneId} to be
* specified for parsing. The matched preferred zone id will be used if the
* textual zone name being parsed is not unique.
*
* If the zone cannot be parsed then an exception is thrown unless the
* section of the formatter is optional.
*
* @param textStyle the text style to use, not null
* @param preferredZones the set of preferred zone ids, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendZoneText(TextStyle textStyle,
Set preferredZones) {
// TODO: preferred zones currently ignored
Jdk8Methods.requireNonNull(preferredZones, "preferredZones");
appendInternal(new ZoneTextPrinterParser(textStyle));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the chronology ID to the formatter.
*
* The chronology ID will be output during a print.
* If the chronology cannot be obtained then an exception will be thrown.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendChronologyId() {
appendInternal(new ChronoPrinterParser(null));
return this;
}
/**
* Appends the chronology ID, such as 'ISO' or 'ThaiBuddhist', to the formatter.
*
* This appends an instruction to format/parse the chronology ID to the builder.
*
* During printing, the chronology is obtained using a mechanism equivalent
* to querying the temporal with {@link TemporalQueries#chronology()}.
* It will be printed using the result of {@link Chronology#getId()}.
* If the chronology cannot be obtained then an exception is thrown unless the
* section of the formatter is optional.
*
* During parsing, the chronology is parsed and must match one of the chronologies
* in {@link Chronology#getAvailableChronologies()}.
* If the chronology cannot be parsed then an exception is thrown unless the
* section of the formatter is optional.
* The parser uses the {@linkplain #parseCaseInsensitive() case sensitive} setting.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendChronologyText(TextStyle textStyle) {
Jdk8Methods.requireNonNull(textStyle, "textStyle");
appendInternal(new ChronoPrinterParser(textStyle));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends a localized date-time pattern to the formatter.
*
* This appends a localized section to the builder, suitable for outputting
* a date, time or date-time combination. The format of the localized
* section is lazily looked up based on four items:
*
* - the {@code dateStyle} specified to this method
*
- the {@code timeStyle} specified to this method
*
- the {@code Locale} of the {@code DateTimeFormatter}
*
- the {@code Chronology}, selecting the best available
*
* During formatting, the chronology is obtained from the temporal object
* being formatted, which may have been overridden by
* {@link DateTimeFormatter#withChronology(Chronology)}.
*
* During parsing, if a chronology has already been parsed, then it is used.
* Otherwise the default from {@code DateTimeFormatter.withChronology(Chronology)}
* is used, with {@code IsoChronology} as the fallback.
*
* Note that this method provides similar functionality to methods on
* {@code DateFormat} such as {@link DateFormat#getDateTimeInstance(int, int)}.
*
* @param dateStyle the date style to use, null means no date required
* @param timeStyle the time style to use, null means no time required
* @return this, for chaining, not null
* @throws IllegalArgumentException if both the date and time styles are null
*/
public DateTimeFormatterBuilder appendLocalized(FormatStyle dateStyle, FormatStyle timeStyle) {
if (dateStyle == null && timeStyle == null) {
throw new IllegalArgumentException("Either the date or time style must be non-null");
}
appendInternal(new LocalizedPrinterParser(dateStyle, timeStyle));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends a character literal to the formatter.
*
* This character will be output during a print.
*
* @param literal the literal to append, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendLiteral(char literal) {
appendInternal(new CharLiteralPrinterParser(literal));
return this;
}
/**
* Appends a string literal to the formatter.
*
* This string will be output during a print.
*
* If the literal is empty, nothing is added to the formatter.
*
* @param literal the literal to append, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendLiteral(String literal) {
Jdk8Methods.requireNonNull(literal, "literal");
if (literal.length() > 0) {
if (literal.length() == 1) {
appendInternal(new CharLiteralPrinterParser(literal.charAt(0)));
} else {
appendInternal(new StringLiteralPrinterParser(literal));
}
}
return this;
}
//-----------------------------------------------------------------------
/**
* Appends all the elements of a formatter to the builder.
*
* This method has the same effect as appending each of the constituent
* parts of the formatter directly to this builder.
*
* @param formatter the formatter to add, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder append(DateTimeFormatter formatter) {
Jdk8Methods.requireNonNull(formatter, "formatter");
appendInternal(formatter.toPrinterParser(false));
return this;
}
/**
* Appends a formatter to the builder which will optionally print/parse.
*
* This method has the same effect as appending each of the constituent
* parts directly to this builder surrounded by an {@link #optionalStart()} and
* {@link #optionalEnd()}.
*
* The formatter will print if data is available for all the fields contained within it.
* The formatter will parse if the string matches, otherwise no error is returned.
*
* @param formatter the formatter to add, not null
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder appendOptional(DateTimeFormatter formatter) {
Jdk8Methods.requireNonNull(formatter, "formatter");
appendInternal(formatter.toPrinterParser(true));
return this;
}
//-----------------------------------------------------------------------
/**
* Appends the elements defined by the specified pattern to the builder.
*
* All letters 'A' to 'Z' and 'a' to 'z' are reserved as pattern letters.
* The characters '{' and '}' are reserved for future use.
* The characters '[' and ']' indicate optional patterns.
* The following pattern letters are defined:
*
* Symbol Meaning Presentation Examples
* ------ ------- ------------ -------
* G era number/text 1; 01; AD; Anno Domini
* y year year 2004; 04
* D day-of-year number 189
* M month-of-year number/text 7; 07; Jul; July; J
* d day-of-month number 10
*
* Q quarter-of-year number/text 3; 03; Q3
* Y week-based-year year 1996; 96
* w week-of-year number 27
* W week-of-month number 27
* e localized day-of-week number 2; Tue; Tuesday; T
* E day-of-week number/text 2; Tue; Tuesday; T
* F week-of-month number 3
*
* a am-pm-of-day text PM
* h clock-hour-of-am-pm (1-12) number 12
* K hour-of-am-pm (0-11) number 0
* k clock-hour-of-am-pm (1-24) number 0
*
* H hour-of-day (0-23) number 0
* m minute-of-hour number 30
* s second-of-minute number 55
* S fraction-of-second fraction 978
* A milli-of-day number 1234
* n nano-of-second number 987654321
* N nano-of-day number 1234000000
*
* V time-zone ID zone-id America/Los_Angeles; Z; -08:30
* z time-zone name zone-name Pacific Standard Time; PST
* X zone-offset 'Z' for zero offset-X Z; -08; -0830; -08:30; -083015; -08:30:15;
* x zone-offset offset-x +0000; -08; -0830; -08:30; -083015; -08:30:15;
* Z zone-offset offset-Z +0000; -0800; -08:00;
*
* p pad next pad modifier 1
*
* ' escape for text delimiter
* '' single quote literal '
* [ optional section start
* ] optional section end
* {} reserved for future use
*
*
* The count of pattern letters determine the format.
*
* Text: The text style is determined based on the number of pattern letters used.
* Less than 4 pattern letters will use the {@link TextStyle#SHORT short form}.
* Exactly 4 pattern letters will use the {@link TextStyle#FULL full form}.
* Exactly 5 pattern letters will use the {@link TextStyle#NARROW narrow form}.
*
* Number: If the count of letters is one, then the value is printed using the minimum number
* of digits and without padding as per {@link #appendValue(TemporalField)}. Otherwise, the
* count of digits is used as the width of the output field as per {@link #appendValue(TemporalField, int)}.
*
* Number/Text: If the count of pattern letters is 3 or greater, use the Text rules above.
* Otherwise use the Number rules above.
*
* Fraction: Outputs the nano-of-second field as a fraction-of-second.
* The nano-of-second value has nine digits, thus the count of pattern letters is from 1 to 9.
* If it is less than 9, then the nano-of-second value is truncated, with only the most
* significant digits being output.
* When parsing in strict mode, the number of parsed digits must match the count of pattern letters.
* When parsing in lenient mode, the number of parsed digits must be at least the count of pattern
* letters, up to 9 digits.
*
* Year: The count of letters determines the minimum field width below which padding is used.
* If the count of letters is two, then a {@link #appendValueReduced reduced} two digit form is used.
* For printing, this outputs the rightmost two digits. For parsing, this will parse using the
* base value of 2000, resulting in a year within the range 2000 to 2099 inclusive.
* If the count of letters is less than four (but not two), then the sign is only output for negative
* years as per {@link SignStyle#NORMAL}.
* Otherwise, the sign is output if the pad width is exceeded, as per {@link SignStyle#EXCEEDS_PAD}
*
* ZoneId: This outputs the time-zone ID, such as 'Europe/Paris'.
* If the count of letters is two, then the time-zone ID is output.
* Any other count of letters throws {@code IllegalArgumentException}.
*
* Pattern Equivalent builder methods
* VV appendZoneId()
*
*
* Zone names: This outputs the display name of the time-zone ID.
* If the count of letters is one, two or three, then the short name is output.
* If the count of letters is four, then the full name is output.
* Five or more letters throws {@code IllegalArgumentException}.
*
* Pattern Equivalent builder methods
* z appendZoneText(TextStyle.SHORT)
* zz appendZoneText(TextStyle.SHORT)
* zzz appendZoneText(TextStyle.SHORT)
* zzzz appendZoneText(TextStyle.FULL)
*
*
* Offset X and x: This formats the offset based on the number of pattern letters.
* One letter outputs just the hour', such as '+01', unless the minute is non-zero
* in which case the minute is also output, such as '+0130'.
* Two letters outputs the hour and minute, without a colon, such as '+0130'.
* Three letters outputs the hour and minute, with a colon, such as '+01:30'.
* Four letters outputs the hour and minute and optional second, without a colon, such as '+013015'.
* Five letters outputs the hour and minute and optional second, with a colon, such as '+01:30:15'.
* Six or more letters throws {@code IllegalArgumentException}.
* Pattern letter 'X' (upper case) will output 'Z' when the offset to be output would be zero,
* whereas pattern letter 'x' (lower case) will output '+00', '+0000', or '+00:00'.
*
* Pattern Equivalent builder methods
* X appendOffset("+HHmm","Z")
* XX appendOffset("+HHMM","Z")
* XXX appendOffset("+HH:MM","Z")
* XXXX appendOffset("+HHMMss","Z")
* XXXXX appendOffset("+HH:MM:ss","Z")
* x appendOffset("+HHmm","+00")
* xx appendOffset("+HHMM","+0000")
* xxx appendOffset("+HH:MM","+00:00")
* xxxx appendOffset("+HHMMss","+0000")
* xxxxx appendOffset("+HH:MM:ss","+00:00")
*
*
* Offset Z: This formats the offset based on the number of pattern letters.
* One, two or three letters outputs the hour and minute, without a colon, such as '+0130'.
* Four or more letters throws {@code IllegalArgumentException}.
* The output will be '+0000' when the offset is zero.
*
* Pattern Equivalent builder methods
* Z appendOffset("+HHMM","+0000")
* ZZ appendOffset("+HHMM","+0000")
* ZZZ appendOffset("+HHMM","+0000")
*
*
* Optional section: The optional section markers work exactly like calling {@link #optionalStart()}
* and {@link #optionalEnd()}.
*
* Pad modifier: Modifies the pattern that immediately follows to be padded with spaces.
* The pad width is determined by the number of pattern letters.
* This is the same as calling {@link #padNext(int)}.
*
* For example, 'ppH' outputs the hour-of-day padded on the left with spaces to a width of 2.
*
* Any unrecognized letter is an error.
* Any non-letter character, other than '[', ']', '{', '}' and the single quote will be output directly.
* Despite this, it is recommended to use single quotes around all characters that you want to
* output directly to ensure that future changes do not break your application.
*
* Note that the pattern string is similar, but not identical, to
* {@link java.text.SimpleDateFormat SimpleDateFormat}.
* The pattern string is also similar, but not identical, to that defined by the
* Unicode Common Locale Data Repository (CLDR/LDML).
* Pattern letters 'E' and 'u' are merged, which changes the meaning of "E" and "EE" to be numeric.
* Pattern letters 'X' is aligned with Unicode CLDR/LDML, which affects pattern 'X'.
* Pattern letter 'y' and 'Y' parse years of two digits and more than 4 digits differently.
* Pattern letters 'n', 'A', 'N', 'I' and 'p' are added.
* Number types will reject large numbers.
*
* @param pattern the pattern to add, not null
* @return this, for chaining, not null
* @throws IllegalArgumentException if the pattern is invalid
*/
public DateTimeFormatterBuilder appendPattern(String pattern) {
Jdk8Methods.requireNonNull(pattern, "pattern");
parsePattern(pattern);
return this;
}
private void parsePattern(String pattern) {
for (int pos = 0; pos < pattern.length(); pos++) {
char cur = pattern.charAt(pos);
if ((cur >= 'A' && cur <= 'Z') || (cur >= 'a' && cur <= 'z')) {
int start = pos++;
for ( ; pos < pattern.length() && pattern.charAt(pos) == cur; pos++); // short loop
int count = pos - start;
// padding
if (cur == 'p') {
int pad = 0;
if (pos < pattern.length()) {
cur = pattern.charAt(pos);
if ((cur >= 'A' && cur <= 'Z') || (cur >= 'a' && cur <= 'z')) {
pad = count;
start = pos++;
for ( ; pos < pattern.length() && pattern.charAt(pos) == cur; pos++); // short loop
count = pos - start;
}
}
if (pad == 0) {
throw new IllegalArgumentException(
"Pad letter 'p' must be followed by valid pad pattern: " + pattern);
}
padNext(pad); // pad and continue parsing
}
// main rules
TemporalField field = FIELD_MAP.get(cur);
if (field != null) {
parseField(cur, count, field);
} else if (cur == 'z') {
if (count > 4) {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
} else if (count == 4) {
appendZoneText(TextStyle.FULL);
} else {
appendZoneText(TextStyle.SHORT);
}
} else if (cur == 'V') {
if (count != 2) {
throw new IllegalArgumentException("Pattern letter count must be 2: " + cur);
}
appendZoneId();
} else if (cur == 'Z') {
if (count < 4) {
appendOffset("+HHMM", "+0000");
} else if (count == 4) {
appendLocalizedOffset(TextStyle.FULL);
} else if (count == 5) {
appendOffset("+HH:MM:ss","Z");
} else {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
} else if (cur == 'O') {
if (count == 1) {
appendLocalizedOffset(TextStyle.SHORT);
} else if (count == 4) {
appendLocalizedOffset(TextStyle.FULL);
} else {
throw new IllegalArgumentException("Pattern letter count must be 1 or 4: " + cur);
}
} else if (cur == 'X') {
if (count > 5) {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
appendOffset(OffsetIdPrinterParser.PATTERNS[count + (count == 1 ? 0 : 1)], "Z");
} else if (cur == 'x') {
if (count > 5) {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
String zero = (count == 1 ? "+00" : (count % 2 == 0 ? "+0000" : "+00:00"));
appendOffset(OffsetIdPrinterParser.PATTERNS[count + (count == 1 ? 0 : 1)], zero);
} else if (cur == 'W') {
if (count > 1) {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
appendInternal(new WeekFieldsPrinterParser('W', count));
} else if (cur == 'w') {
if (count > 2) {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
appendInternal(new WeekFieldsPrinterParser('w', count));
} else if (cur == 'Y') {
appendInternal(new WeekFieldsPrinterParser('Y', count));
} else {
throw new IllegalArgumentException("Unknown pattern letter: " + cur);
}
pos--;
} else if (cur == '\'') {
// parse literals
int start = pos++;
for ( ; pos < pattern.length(); pos++) {
if (pattern.charAt(pos) == '\'') {
if (pos + 1 < pattern.length() && pattern.charAt(pos + 1) == '\'') {
pos++;
} else {
break; // end of literal
}
}
}
if (pos >= pattern.length()) {
throw new IllegalArgumentException("Pattern ends with an incomplete string literal: " + pattern);
}
String str = pattern.substring(start + 1, pos);
if (str.length() == 0) {
appendLiteral('\'');
} else {
appendLiteral(str.replace("''", "'"));
}
} else if (cur == '[') {
optionalStart();
} else if (cur == ']') {
if (active.parent == null) {
throw new IllegalArgumentException("Pattern invalid as it contains ] without previous [");
}
optionalEnd();
} else if (cur == '{' || cur == '}' || cur == '#') {
throw new IllegalArgumentException("Pattern includes reserved character: '" + cur + "'");
} else {
appendLiteral(cur);
}
}
}
private void parseField(char cur, int count, TemporalField field) {
switch (cur) {
case 'u':
case 'y':
if (count == 2) {
appendValueReduced(field, 2, 2, ReducedPrinterParser.BASE_DATE);
} else if (count < 4) {
appendValue(field, count, 19, SignStyle.NORMAL);
} else {
appendValue(field, count, 19, SignStyle.EXCEEDS_PAD);
}
break;
case 'M':
case 'Q':
switch (count) {
case 1:
appendValue(field);
break;
case 2:
appendValue(field, 2);
break;
case 3:
appendText(field, TextStyle.SHORT);
break;
case 4:
appendText(field, TextStyle.FULL);
break;
case 5:
appendText(field, TextStyle.NARROW);
break;
default:
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
break;
case 'L':
case 'q':
switch (count) {
case 1:
appendValue(field);
break;
case 2:
appendValue(field, 2);
break;
case 3:
appendText(field, TextStyle.SHORT_STANDALONE);
break;
case 4:
appendText(field, TextStyle.FULL_STANDALONE);
break;
case 5:
appendText(field, TextStyle.NARROW_STANDALONE);
break;
default:
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
break;
case 'e':
switch (count) {
case 1:
case 2:
appendInternal(new WeekFieldsPrinterParser('e', count));
break;
case 3:
appendText(field, TextStyle.SHORT);
break;
case 4:
appendText(field, TextStyle.FULL);
break;
case 5:
appendText(field, TextStyle.NARROW);
break;
default:
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
break;
case 'c':
switch (count) {
case 1:
appendInternal(new WeekFieldsPrinterParser('c', count));
break;
case 2:
throw new IllegalArgumentException("Invalid number of pattern letters: " + cur);
case 3:
appendText(field, TextStyle.SHORT_STANDALONE);
break;
case 4:
appendText(field, TextStyle.FULL_STANDALONE);
break;
case 5:
appendText(field, TextStyle.NARROW_STANDALONE);
break;
default:
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
break;
case 'a':
if (count == 1) {
appendText(field, TextStyle.SHORT);
} else {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
break;
case 'E':
case 'G':
switch (count) {
case 1:
case 2:
case 3:
appendText(field, TextStyle.SHORT);
break;
case 4:
appendText(field, TextStyle.FULL);
break;
case 5:
appendText(field, TextStyle.NARROW);
break;
default:
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
break;
case 'S':
appendFraction(NANO_OF_SECOND, count, count, false);
break;
case 'F':
if (count == 1) {
appendValue(field);
} else {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
break;
case 'd':
case 'h':
case 'H':
case 'k':
case 'K':
case 'm':
case 's':
if (count == 1) {
appendValue(field);
} else if (count == 2) {
appendValue(field, count);
} else {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
break;
case 'D':
if (count == 1) {
appendValue(field);
} else if (count <= 3) {
appendValue(field, count);
} else {
throw new IllegalArgumentException("Too many pattern letters: " + cur);
}
break;
default:
if (count == 1) {
appendValue(field);
} else {
appendValue(field, count);
}
break;
}
}
/** Map of letters to fields. */
private static final Map FIELD_MAP = new HashMap();
static {
FIELD_MAP.put('G', ChronoField.ERA);
FIELD_MAP.put('y', ChronoField.YEAR_OF_ERA);
FIELD_MAP.put('u', ChronoField.YEAR);
FIELD_MAP.put('Q', IsoFields.QUARTER_OF_YEAR);
FIELD_MAP.put('q', IsoFields.QUARTER_OF_YEAR);
FIELD_MAP.put('M', ChronoField.MONTH_OF_YEAR);
FIELD_MAP.put('L', ChronoField.MONTH_OF_YEAR);
FIELD_MAP.put('D', ChronoField.DAY_OF_YEAR);
FIELD_MAP.put('d', ChronoField.DAY_OF_MONTH);
FIELD_MAP.put('F', ChronoField.ALIGNED_DAY_OF_WEEK_IN_MONTH);
FIELD_MAP.put('E', ChronoField.DAY_OF_WEEK);
FIELD_MAP.put('c', ChronoField.DAY_OF_WEEK);
FIELD_MAP.put('e', ChronoField.DAY_OF_WEEK);
FIELD_MAP.put('a', ChronoField.AMPM_OF_DAY);
FIELD_MAP.put('H', ChronoField.HOUR_OF_DAY);
FIELD_MAP.put('k', ChronoField.CLOCK_HOUR_OF_DAY);
FIELD_MAP.put('K', ChronoField.HOUR_OF_AMPM);
FIELD_MAP.put('h', ChronoField.CLOCK_HOUR_OF_AMPM);
FIELD_MAP.put('m', ChronoField.MINUTE_OF_HOUR);
FIELD_MAP.put('s', ChronoField.SECOND_OF_MINUTE);
FIELD_MAP.put('S', ChronoField.NANO_OF_SECOND);
FIELD_MAP.put('A', ChronoField.MILLI_OF_DAY);
FIELD_MAP.put('n', ChronoField.NANO_OF_SECOND);
FIELD_MAP.put('N', ChronoField.NANO_OF_DAY);
}
//-----------------------------------------------------------------------
/**
* Causes the next added printer/parser to pad to a fixed width using a space.
*
* This padding will pad to a fixed width using spaces.
*
* During formatting, the decorated element will be output and then padded
* to the specified width. An exception will be thrown during printing if
* the pad width is exceeded.
*
* During parsing, the padding and decorated element are parsed.
* If parsing is lenient, then the pad width is treated as a maximum.
* If parsing is case insensitive, then the pad character is matched ignoring case.
* The padding is parsed greedily. Thus, if the decorated element starts with
* the pad character, it will not be parsed.
*
* @param padWidth the pad width, 1 or greater
* @return this, for chaining, not null
* @throws IllegalArgumentException if pad width is too small
*/
public DateTimeFormatterBuilder padNext(int padWidth) {
return padNext(padWidth, ' ');
}
/**
* Causes the next added printer/parser to pad to a fixed width.
*
* This padding is intended for padding other than zero-padding.
* Zero-padding should be achieved using the appendValue methods.
*
* During formatting, the decorated element will be output and then padded
* to the specified width. An exception will be thrown during printing if
* the pad width is exceeded.
*
* During parsing, the padding and decorated element are parsed.
* If parsing is lenient, then the pad width is treated as a maximum.
* If parsing is case insensitive, then the pad character is matched ignoring case.
* The padding is parsed greedily. Thus, if the decorated element starts with
* the pad character, it will not be parsed.
*
* @param padWidth the pad width, 1 or greater
* @param padChar the pad character
* @return this, for chaining, not null
* @throws IllegalArgumentException if pad width is too small
*/
public DateTimeFormatterBuilder padNext(int padWidth, char padChar) {
if (padWidth < 1) {
throw new IllegalArgumentException("The pad width must be at least one but was " + padWidth);
}
active.padNextWidth = padWidth;
active.padNextChar = padChar;
active.valueParserIndex = -1;
return this;
}
//-----------------------------------------------------------------------
/**
* Mark the start of an optional section.
*
* The output of printing can include optional sections, which may be nested.
* An optional section is started by calling this method and ended by calling
* {@link #optionalEnd()} or by ending the build process.
*
* All elements in the optional section are treated as optional.
* During printing, the section is only output if data is available in the
* {@code TemporalAccessor} for all the elements in the section.
* During parsing, the whole section may be missing from the parsed string.
*
* For example, consider a builder setup as
* {@code builder.appendValue(HOUR_OF_DAY,2).optionalStart().appendValue(MINUTE_OF_HOUR,2)}.
* The optional section ends automatically at the end of the builder.
* During printing, the minute will only be output if its value can be obtained from the date-time.
* During parsing, the input will be successfully parsed whether the minute is present or not.
*
* @return this, for chaining, not null
*/
public DateTimeFormatterBuilder optionalStart() {
active.valueParserIndex = -1;
active = new DateTimeFormatterBuilder(active, true);
return this;
}
/**
* Ends an optional section.
*
* The output of printing can include optional sections, which may be nested.
* An optional section is started by calling {@link #optionalStart()} and ended
* using this method (or at the end of the builder).
*
* Calling this method without having previously called {@code optionalStart}
* will throw an exception.
* Calling this method immediately after calling {@code optionalStart} has no effect
* on the formatter other than ending the (empty) optional section.
*
* All elements in the optional section are treated as optional.
* During printing, the section is only output if data is available in the
* {@code TemporalAccessor} for all the elements in the section.
* During parsing, the whole section may be missing from the parsed string.
*
* For example, consider a builder setup as
* {@code builder.appendValue(HOUR_OF_DAY,2).optionalStart().appendValue(MINUTE_OF_HOUR,2).optionalEnd()}.
* During printing, the minute will only be output if its value can be obtained from the date-time.
* During parsing, the input will be successfully parsed whether the minute is present or not.
*
* @return this, for chaining, not null
* @throws IllegalStateException if there was no previous call to {@code optionalStart}
*/
public DateTimeFormatterBuilder optionalEnd() {
if (active.parent == null) {
throw new IllegalStateException("Cannot call optionalEnd() as there was no previous call to optionalStart()");
}
if (active.printerParsers.size() > 0) {
CompositePrinterParser cpp = new CompositePrinterParser(active.printerParsers, active.optional);
active = active.parent;
appendInternal(cpp);
} else {
active = active.parent;
}
return this;
}
//-----------------------------------------------------------------------
/**
* Appends a printer and/or parser to the internal list handling padding.
*
* @param pp the printer-parser to add, not null
* @return the index into the active parsers list
*/
private int appendInternal(DateTimePrinterParser pp) {
Jdk8Methods.requireNonNull(pp, "pp");
if (active.padNextWidth > 0) {
if (pp != null) {
pp = new PadPrinterParserDecorator(pp, active.padNextWidth, active.padNextChar);
}
active.padNextWidth = 0;
active.padNextChar = 0;
}
active.printerParsers.add(pp);
active.valueParserIndex = -1;
return active.printerParsers.size() - 1;
}
//-----------------------------------------------------------------------
/**
* Completes this builder by creating the DateTimeFormatter using the default locale.
*
* This will create a formatter with the default locale.
* Numbers will be printed and parsed using the standard non-localized set of symbols.
*
* Calling this method will end any open optional sections by repeatedly
* calling {@link #optionalEnd()} before creating the formatter.
*
* This builder can still be used after creating the formatter if desired,
* although the state may have been changed by calls to {@code optionalEnd}.
*
* @return the created formatter, not null
*/
public DateTimeFormatter toFormatter() {
return toFormatter(Locale.getDefault());
}
/**
* Completes this builder by creating the DateTimeFormatter using the specified locale.
*
* This will create a formatter with the specified locale.
* Numbers will be printed and parsed using the standard non-localized set of symbols.
*
* Calling this method will end any open optional sections by repeatedly
* calling {@link #optionalEnd()} before creating the formatter.
*
* This builder can still be used after creating the formatter if desired,
* although the state may have been changed by calls to {@code optionalEnd}.
*
* @param locale the locale to use for formatting, not null
* @return the created formatter, not null
*/
public DateTimeFormatter toFormatter(Locale locale) {
Jdk8Methods.requireNonNull(locale, "locale");
while (active.parent != null) {
optionalEnd();
}
CompositePrinterParser pp = new CompositePrinterParser(printerParsers, false);
return new DateTimeFormatter(pp, locale, DecimalStyle.STANDARD, ResolverStyle.SMART, null, null, null);
}
DateTimeFormatter toFormatter(ResolverStyle style) {
return toFormatter().withResolverStyle(style);
}
//-----------------------------------------------------------------------
/**
* Strategy for printing/parsing date-time information.
*
* The printer may print any part, or the whole, of the input date-time object.
* Typically, a complete print is constructed from a number of smaller
* units, each outputting a single field.
*
* The parser may parse any piece of text from the input, storing the result
* in the context. Typically, each individual parser will just parse one
* field, such as the day-of-month, storing the value in the context.
* Once the parse is complete, the caller will then convert the context
* to a {@link DateTimeBuilder} to merge the parsed values to create the
* desired object, such as a {@code LocalDate}.
*
* The parse position will be updated during the parse. Parsing will start at
* the specified index and the return value specifies the new parse position
* for the next parser. If an error occurs, the returned index will be negative
* and will have the error position encoded using the complement operator.
*
*
Specification for implementors
* This interface must be implemented with care to ensure other classes operate correctly.
* All implementations that can be instantiated must be final, immutable and thread-safe.
*
* The context is not a thread-safe object and a new instance will be created
* for each print that occurs. The context must not be stored in an instance
* variable or shared with any other threads.
*/
interface DateTimePrinterParser {
/**
* Prints the date-time object to the buffer.
*
* The context holds information to use during the print.
* It also contains the date-time information to be printed.
*
* The buffer must not be mutated beyond the content controlled by the implementation.
*
* @param context the context to print using, not null
* @param buf the buffer to append to, not null
* @return false if unable to query the value from the date-time, true otherwise
* @throws DateTimeException if the date-time cannot be printed successfully
*/
boolean print(DateTimePrintContext context, StringBuilder buf);
/**
* Parses text into date-time information.
*
* The context holds information to use during the parse.
* It is also used to store the parsed date-time information.
*
* @param context the context to use and parse into, not null
* @param text the input text to parse, not null
* @param position the position to start parsing at, from 0 to the text length
* @return the new parse position, where negative means an error with the
* error position encoded using the complement ~ operator
* @throws NullPointerException if the context or text is null
* @throws IndexOutOfBoundsException if the position is invalid
*/
int parse(DateTimeParseContext context, CharSequence text, int position);
}
//-----------------------------------------------------------------------
/**
* Composite printer and parser.
*/
static final class CompositePrinterParser implements DateTimePrinterParser {
private final DateTimePrinterParser[] printerParsers;
private final boolean optional;
CompositePrinterParser(List printerParsers, boolean optional) {
this(printerParsers.toArray(new DateTimePrinterParser[printerParsers.size()]), optional);
}
CompositePrinterParser(DateTimePrinterParser[] printerParsers, boolean optional) {
this.printerParsers = printerParsers;
this.optional = optional;
}
/**
* Returns a copy of this printer-parser with the optional flag changed.
*
* @param optional the optional flag to set in the copy
* @return the new printer-parser, not null
*/
public CompositePrinterParser withOptional(boolean optional) {
if (optional == this.optional) {
return this;
}
return new CompositePrinterParser(printerParsers, optional);
}
@Override
public boolean print(DateTimePrintContext context, StringBuilder buf) {
int length = buf.length();
if (optional) {
context.startOptional();
}
try {
for (DateTimePrinterParser pp : printerParsers) {
if (pp.print(context, buf) == false) {
buf.setLength(length); // reset buffer
return true;
}
}
} finally {
if (optional) {
context.endOptional();
}
}
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
if (optional) {
context.startOptional();
int pos = position;
for (DateTimePrinterParser pp : printerParsers) {
pos = pp.parse(context, text, pos);
if (pos < 0) {
context.endOptional(false);
return position; // return original position
}
}
context.endOptional(true);
return pos;
} else {
for (DateTimePrinterParser pp : printerParsers) {
position = pp.parse(context, text, position);
if (position < 0) {
break;
}
}
return position;
}
}
@Override
public String toString() {
StringBuilder buf = new StringBuilder();
if (printerParsers != null) {
buf.append(optional ? "[" : "(");
for (DateTimePrinterParser pp : printerParsers) {
buf.append(pp);
}
buf.append(optional ? "]" : ")");
}
return buf.toString();
}
}
//-----------------------------------------------------------------------
/**
* Pads the output to a fixed width.
*/
static final class PadPrinterParserDecorator implements DateTimePrinterParser {
private final DateTimePrinterParser printerParser;
private final int padWidth;
private final char padChar;
/**
* Constructor.
*
* @param printerParser the printer, not null
* @param padWidth the width to pad to, 1 or greater
* @param padChar the pad character
*/
PadPrinterParserDecorator(DateTimePrinterParser printerParser, int padWidth, char padChar) {
// input checked by DateTimeFormatterBuilder
this.printerParser = printerParser;
this.padWidth = padWidth;
this.padChar = padChar;
}
@Override
public boolean print(DateTimePrintContext context, StringBuilder buf) {
int preLen = buf.length();
if (printerParser.print(context, buf) == false) {
return false;
}
int len = buf.length() - preLen;
if (len > padWidth) {
throw new DateTimeException(
"Cannot print as output of " + len + " characters exceeds pad width of " + padWidth);
}
for (int i = 0; i < padWidth - len; i++) {
buf.insert(preLen, padChar);
}
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
// cache context before changed by decorated parser
final boolean strict = context.isStrict();
final boolean caseSensitive = context.isCaseSensitive();
// parse
if (position > text.length()) {
throw new IndexOutOfBoundsException();
}
if (position == text.length()) {
return ~position; // no more characters in the string
}
int endPos = position + padWidth;
if (endPos > text.length()) {
if (strict) {
return ~position; // not enough characters in the string to meet the parse width
}
endPos = text.length();
}
int pos = position;
while (pos < endPos &&
(caseSensitive ? text.charAt(pos) == padChar : context.charEquals(text.charAt(pos), padChar))) {
pos++;
}
text = text.subSequence(0, endPos);
int resultPos = printerParser.parse(context, text, pos);
if (resultPos != endPos && strict) {
return ~(position + pos); // parse of decorated field didn't parse to the end
}
return resultPos;
}
@Override
public String toString() {
return "Pad(" + printerParser + "," + padWidth + (padChar == ' ' ? ")" : ",'" + padChar + "')");
}
}
//-----------------------------------------------------------------------
/**
* Enumeration to apply simple parse settings.
*/
static enum SettingsParser implements DateTimePrinterParser {
SENSITIVE,
INSENSITIVE,
STRICT,
LENIENT;
@Override
public boolean print(DateTimePrintContext context, StringBuilder buf) {
return true; // nothing to do here
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
// using ordinals to avoid javac synthetic inner class
switch (ordinal()) {
case 0: context.setCaseSensitive(true); break;
case 1: context.setCaseSensitive(false); break;
case 2: context.setStrict(true); break;
case 3: context.setStrict(false); break;
}
return position;
}
@Override
public String toString() {
// using ordinals to avoid javac synthetic inner class
switch (ordinal()) {
case 0: return "ParseCaseSensitive(true)";
case 1: return "ParseCaseSensitive(false)";
case 2: return "ParseStrict(true)";
case 3: return "ParseStrict(false)";
}
throw new IllegalStateException("Unreachable");
}
}
//-----------------------------------------------------------------------
/**
* Used by parseDefaulting().
*/
static class DefaultingParser implements DateTimePrinterParser {
private final TemporalField field;
private final long value;
DefaultingParser(TemporalField field, long value) {
this.field = field;
this.value = value;
}
public boolean print(DateTimePrintContext context, StringBuilder buf) {
return true;
}
public int parse(DateTimeParseContext context, CharSequence text, int position) {
if (context.getParsed(field) == null) {
context.setParsedField(field, value, position, position);
}
return position;
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses a character literal.
*/
static final class CharLiteralPrinterParser implements DateTimePrinterParser {
private final char literal;
CharLiteralPrinterParser(char literal) {
this.literal = literal;
}
@Override
public boolean print(DateTimePrintContext context, StringBuilder buf) {
buf.append(literal);
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
int length = text.length();
if (position == length) {
return ~position;
}
char ch = text.charAt(position);
if (context.charEquals(literal, ch) == false) {
return ~position;
}
return position + 1;
}
@Override
public String toString() {
if (literal == '\'') {
return "''";
}
return "'" + literal + "'";
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses a string literal.
*/
static final class StringLiteralPrinterParser implements DateTimePrinterParser {
private final String literal;
StringLiteralPrinterParser(String literal) {
this.literal = literal; // validated by caller
}
@Override
public boolean print(DateTimePrintContext context, StringBuilder buf) {
buf.append(literal);
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
int length = text.length();
if (position > length || position < 0) {
throw new IndexOutOfBoundsException();
}
if (context.subSequenceEquals(text, position, literal, 0, literal.length()) == false) {
return ~position;
}
return position + literal.length();
}
@Override
public String toString() {
String converted = literal.replace("'", "''");
return "'" + converted + "'";
}
}
//-----------------------------------------------------------------------
/**
* Prints and parses a numeric date-time field with optional padding.
*/
static class NumberPrinterParser implements DateTimePrinterParser {
/**
* Array of 10 to the power of n.
*/
static final int[] EXCEED_POINTS = new int[] {
0,
10,
100,
1000,
10000,
100000,
1000000,
10000000,
100000000,
1000000000,
};
final TemporalField field;
final int minWidth;
final int maxWidth;
final SignStyle signStyle;
final int subsequentWidth;
/**
* Constructor.
*
* @param field the field to print, not null
* @param minWidth the minimum field width, from 1 to 19
* @param maxWidth the maximum field width, from minWidth to 19
* @param signStyle the positive/negative sign style, not null
*/
NumberPrinterParser(TemporalField field, int minWidth, int maxWidth, SignStyle signStyle) {
// validated by caller
this.field = field;
this.minWidth = minWidth;
this.maxWidth = maxWidth;
this.signStyle = signStyle;
this.subsequentWidth = 0;
}
/**
* Constructor.
*
* @param field the field to print, not null
* @param minWidth the minimum field width, from 1 to 19
* @param maxWidth the maximum field width, from minWidth to 19
* @param signStyle the positive/negative sign style, not null
* @param subsequentWidth the width of subsequent non-negative numbers, 0 or greater,
* -1 if fixed width due to active adjacent parsing
*/
private NumberPrinterParser(TemporalField field, int minWidth, int maxWidth, SignStyle signStyle, int subsequentWidth) {
// validated by caller
this.field = field;
this.minWidth = minWidth;
this.maxWidth = maxWidth;
this.signStyle = signStyle;
this.subsequentWidth = subsequentWidth;
}
/**
* Returns a new instance with fixed width flag set.
*
* @return a new updated printer-parser, not null
*/
NumberPrinterParser withFixedWidth() {
if (subsequentWidth == -1) {
return this;
}
return new NumberPrinterParser(field, minWidth, maxWidth, signStyle, -1);
}
/**
* Returns a new instance with an updated subsequent width.
*
* @param subsequentWidth the width of subsequent non-negative numbers, 0 or greater
* @return a new updated printer-parser, not null
*/
NumberPrinterParser withSubsequentWidth(int subsequentWidth) {
return new NumberPrinterParser(field, minWidth, maxWidth, signStyle, this.subsequentWidth + subsequentWidth);
}
@Override
public boolean print(DateTimePrintContext context, StringBuilder buf) {
Long valueLong = context.getValue(field);
if (valueLong == null) {
return false;
}
long value = getValue(context, valueLong);
DecimalStyle symbols = context.getSymbols();
String str = (value == Long.MIN_VALUE ? "9223372036854775808" : Long.toString(Math.abs(value)));
if (str.length() > maxWidth) {
throw new DateTimeException("Field " + field +
" cannot be printed as the value " + value +
" exceeds the maximum print width of " + maxWidth);
}
str = symbols.convertNumberToI18N(str);
if (value >= 0) {
switch (signStyle) {
case EXCEEDS_PAD:
if (minWidth < 19 && value >= EXCEED_POINTS[minWidth]) {
buf.append(symbols.getPositiveSign());
}
break;
case ALWAYS:
buf.append(symbols.getPositiveSign());
break;
}
} else {
switch (signStyle) {
case NORMAL:
case EXCEEDS_PAD:
case ALWAYS:
buf.append(symbols.getNegativeSign());
break;
case NOT_NEGATIVE:
throw new DateTimeException("Field " + field +
" cannot be printed as the value " + value +
" cannot be negative according to the SignStyle");
}
}
for (int i = 0; i < minWidth - str.length(); i++) {
buf.append(symbols.getZeroDigit());
}
buf.append(str);
return true;
}
/**
* Gets the value to output.
*
* @param context the context
* @param value the value of the field, not null
* @return the value
*/
long getValue(DateTimePrintContext context, long value) {
return value;
}
boolean isFixedWidth(DateTimeParseContext context) {
return subsequentWidth == -1 ||
(subsequentWidth > 0 && minWidth == maxWidth && signStyle == SignStyle.NOT_NEGATIVE);
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
int length = text.length();
if (position == length) {
return ~position;
}
char sign = text.charAt(position); // IOOBE if invalid position
boolean negative = false;
boolean positive = false;
if (sign == context.getSymbols().getPositiveSign()) {
if (signStyle.parse(true, context.isStrict(), minWidth == maxWidth) == false) {
return ~position;
}
positive = true;
position++;
} else if (sign == context.getSymbols().getNegativeSign()) {
if (signStyle.parse(false, context.isStrict(), minWidth == maxWidth) == false) {
return ~position;
}
negative = true;
position++;
} else {
if (signStyle == SignStyle.ALWAYS && context.isStrict()) {
return ~position;
}
}
int effMinWidth = (context.isStrict() || isFixedWidth(context) ? minWidth : 1);
int minEndPos = position + effMinWidth;
if (minEndPos > length) {
return ~position;
}
int effMaxWidth = (context.isStrict() || isFixedWidth(context) ? maxWidth : 9) + Math.max(subsequentWidth, 0);
long total = 0;
BigInteger totalBig = null;
int pos = position;
for (int pass = 0; pass < 2; pass++) {
int maxEndPos = Math.min(pos + effMaxWidth, length);
while (pos < maxEndPos) {
char ch = text.charAt(pos++);
int digit = context.getSymbols().convertToDigit(ch);
if (digit < 0) {
pos--;
if (pos < minEndPos) {
return ~position; // need at least min width digits
}
break;
}
if ((pos - position) > 18) {
if (totalBig == null) {
totalBig = BigInteger.valueOf(total);
}
totalBig = totalBig.multiply(BigInteger.TEN).add(BigInteger.valueOf(digit));
} else {
total = total * 10 + digit;
}
}
if (subsequentWidth > 0 && pass == 0) {
// re-parse now we know the correct width
int parseLen = pos - position;
effMaxWidth = Math.max(effMinWidth, parseLen - subsequentWidth);
pos = position;
total = 0;
totalBig = null;
} else {
break;
}
}
if (negative) {
if (totalBig != null) {
if (totalBig.equals(BigInteger.ZERO) && context.isStrict()) {
return ~(position - 1); // minus zero not allowed
}
totalBig = totalBig.negate();
} else {
if (total == 0 && context.isStrict()) {
return ~(position - 1); // minus zero not allowed
}
total = -total;
}
} else if (signStyle == SignStyle.EXCEEDS_PAD && context.isStrict()) {
int parseLen = pos - position;
if (positive) {
if (parseLen <= minWidth) {
return ~(position - 1); // '+' only parsed if minWidth exceeded
}
} else {
if (parseLen > minWidth) {
return ~position; // '+' must be parsed if minWidth exceeded
}
}
}
if (totalBig != null) {
if (totalBig.bitLength() > 63) {
// overflow, parse 1 less digit
totalBig = totalBig.divide(BigInteger.TEN);
pos--;
}
return setValue(context, totalBig.longValue(), position, pos);
}
return setValue(context, total, position, pos);
}
/**
* Stores the value.
*
* @param context the context to store into, not null
* @param value the value
* @param errorPos the position of the field being parsed
* @param successPos the position after the field being parsed
* @return the new position
*/
int setValue(DateTimeParseContext context, long value, int errorPos, int successPos) {
return context.setParsedField(field, value, errorPos, successPos);
}
@Override
public String toString() {
if (minWidth == 1 && maxWidth == 19 && signStyle == SignStyle.NORMAL) {
return "Value(" + field + ")";
}
if (minWidth == maxWidth && signStyle == SignStyle.NOT_NEGATIVE) {
return "Value(" + field + "," + minWidth + ")";
}
return "Value(" + field + "," + minWidth + "," + maxWidth + "," + signStyle + ")";
}
}
//-----------------------------------------------------------------------
/**
* Prints and parses a reduced numeric date-time field.
*/
static final class ReducedPrinterParser extends NumberPrinterParser {
static final LocalDate BASE_DATE = LocalDate.of(2000, 1, 1);
private final int baseValue;
private final ChronoLocalDate baseDate;
/**
* Constructor.
*
* @param field the field to print, validated not null
* @param width the field width, from 1 to 10
* @param maxWidth the field max width, from 1 to 10
* @param baseValue the base value
* @param baseDate the base date
*/
ReducedPrinterParser(TemporalField field, int width, int maxWidth, int baseValue, ChronoLocalDate baseDate) {
super(field, width, maxWidth, SignStyle.NOT_NEGATIVE);
if (width < 1 || width > 10) {
throw new IllegalArgumentException("The width must be from 1 to 10 inclusive but was " + width);
}
if (maxWidth < 1 || maxWidth > 10) {
throw new IllegalArgumentException("The maxWidth must be from 1 to 10 inclusive but was " + maxWidth);
}
if (maxWidth < width) {
throw new IllegalArgumentException("The maxWidth must be greater than the width");
}
if (baseDate == null) {
if (field.range().isValidValue(baseValue) == false) {
throw new IllegalArgumentException("The base value must be within the range of the field");
}
if ((((long) baseValue) + EXCEED_POINTS[width]) > Integer.MAX_VALUE) {
throw new DateTimeException("Unable to add printer-parser as the range exceeds the capacity of an int");
}
}
this.baseValue = baseValue;
this.baseDate = baseDate;
}
private ReducedPrinterParser(TemporalField field, int minWidth, int maxWidth,
int baseValue, ChronoLocalDate baseDate, int subsequentWidth) {
super(field, minWidth, maxWidth, SignStyle.NOT_NEGATIVE, subsequentWidth);
this.baseValue = baseValue;
this.baseDate = baseDate;
}
@Override
long getValue(DateTimePrintContext context, long value) {
long absValue = Math.abs(value);
int baseValue = this.baseValue;
if (baseDate != null) {
Chronology chrono = Chronology.from(context.getTemporal());
baseValue = chrono.date(baseDate).get(field);
}
if (value >= baseValue && value < baseValue + EXCEED_POINTS[minWidth]) {
return absValue % EXCEED_POINTS[minWidth];
}
return absValue % EXCEED_POINTS[maxWidth];
}
@Override
int setValue(DateTimeParseContext context, long value, int errorPos, int successPos) {
int baseValue = this.baseValue;
if (baseDate != null) {
Chronology chrono = context.getEffectiveChronology();
baseValue = chrono.date(baseDate).get(field);
context.addChronologyChangedParser(this, value, errorPos, successPos);
}
int parseLen = successPos - errorPos;
if (parseLen == minWidth && value >= 0) {
long range = EXCEED_POINTS[minWidth];
long lastPart = baseValue % range;
long basePart = baseValue - lastPart;
if (baseValue > 0) {
value = basePart + value;
} else {
value = basePart - value;
}
if (value < baseValue) {
value += range;
}
}
return context.setParsedField(field, value, errorPos, successPos);
}
@Override
NumberPrinterParser withFixedWidth() {
if (subsequentWidth == -1) {
return this;
}
return new ReducedPrinterParser(field, minWidth, maxWidth, baseValue, baseDate, -1);
}
@Override
ReducedPrinterParser withSubsequentWidth(int subsequentWidth) {
return new ReducedPrinterParser(field, minWidth, maxWidth, baseValue, baseDate,
this.subsequentWidth + subsequentWidth);
}
@Override
boolean isFixedWidth(DateTimeParseContext context) {
if (context.isStrict() == false) {
return false;
}
return super.isFixedWidth(context);
}
@Override
public String toString() {
return "ReducedValue(" + field + "," + minWidth + "," + maxWidth + "," + (baseDate != null ? baseDate : baseValue) + ")";
}
}
//-----------------------------------------------------------------------
/**
* Prints and parses a numeric date-time field with optional padding.
*/
static final class FractionPrinterParser implements DateTimePrinterParser {
private final TemporalField field;
private final int minWidth;
private final int maxWidth;
private final boolean decimalPoint;
/**
* Constructor.
*
* @param field the field to output, not null
* @param minWidth the minimum width to output, from 0 to 9
* @param maxWidth the maximum width to output, from 0 to 9
* @param decimalPoint whether to output the localized decimal point symbol
*/
FractionPrinterParser(TemporalField field, int minWidth, int maxWidth, boolean decimalPoint) {
Jdk8Methods.requireNonNull(field, "field");
if (field.range().isFixed() == false) {
throw new IllegalArgumentException("Field must have a fixed set of values: " + field);
}
if (minWidth < 0 || minWidth > 9) {
throw new IllegalArgumentException("Minimum width must be from 0 to 9 inclusive but was " + minWidth);
}
if (maxWidth < 1 || maxWidth > 9) {
throw new IllegalArgumentException("Maximum width must be from 1 to 9 inclusive but was " + maxWidth);
}
if (maxWidth < minWidth) {
throw new IllegalArgumentException("Maximum width must exceed or equal the minimum width but " +
maxWidth + " < " + minWidth);
}
this.field = field;
this.minWidth = minWidth;
this.maxWidth = maxWidth;
this.decimalPoint = decimalPoint;
}
@Override
public boolean print(DateTimePrintContext context, StringBuilder buf) {
Long value = context.getValue(field);
if (value == null) {
return false;
}
DecimalStyle symbols = context.getSymbols();
BigDecimal fraction = convertToFraction(value);
if (fraction.scale() == 0) { // scale is zero if value is zero
if (minWidth > 0) {
if (decimalPoint) {
buf.append(symbols.getDecimalSeparator());
}
for (int i = 0; i < minWidth; i++) {
buf.append(symbols.getZeroDigit());
}
}
} else {
int outputScale = Math.min(Math.max(fraction.scale(), minWidth), maxWidth);
fraction = fraction.setScale(outputScale, RoundingMode.FLOOR);
String str = fraction.toPlainString().substring(2);
str = symbols.convertNumberToI18N(str);
if (decimalPoint) {
buf.append(symbols.getDecimalSeparator());
}
buf.append(str);
}
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
int effectiveMin = (context.isStrict() ? minWidth : 0);
int effectiveMax = (context.isStrict() ? maxWidth : 9);
int length = text.length();
if (position == length) {
// valid if whole field is optional, invalid if minimum width
return (effectiveMin > 0 ? ~position : position);
}
if (decimalPoint) {
if (text.charAt(position) != context.getSymbols().getDecimalSeparator()) {
// valid if whole field is optional, invalid if minimum width
return (effectiveMin > 0 ? ~position : position);
}
position++;
}
int minEndPos = position + effectiveMin;
if (minEndPos > length) {
return ~position; // need at least min width digits
}
int maxEndPos = Math.min(position + effectiveMax, length);
int total = 0; // can use int because we are only parsing up to 9 digits
int pos = position;
while (pos < maxEndPos) {
char ch = text.charAt(pos++);
int digit = context.getSymbols().convertToDigit(ch);
if (digit < 0) {
if (pos < minEndPos) {
return ~position; // need at least min width digits
}
pos--;
break;
}
total = total * 10 + digit;
}
BigDecimal fraction = new BigDecimal(total).movePointLeft(pos - position);
long value = convertFromFraction(fraction);
return context.setParsedField(field, value, position, pos);
}
/**
* Converts a value for this field to a fraction between 0 and 1.
*
* The fractional value is between 0 (inclusive) and 1 (exclusive).
* It can only be returned if the {@link TemporalField#range() value range} is fixed.
* The fraction is obtained by calculation from the field range using 9 decimal
* places and a rounding mode of {@link RoundingMode#FLOOR FLOOR}.
* The calculation is inaccurate if the values do not run continuously from smallest to largest.
*
* For example, the second-of-minute value of 15 would be returned as 0.25,
* assuming the standard definition of 60 seconds in a minute.
*
* @param value the value to convert, must be valid for this rule
* @return the value as a fraction within the range, from 0 to 1, not null
* @throws DateTimeException if the value cannot be converted to a fraction
*/
private BigDecimal convertToFraction(long value) {
ValueRange range = field.range();
range.checkValidValue(value, field);
BigDecimal minBD = BigDecimal.valueOf(range.getMinimum());
BigDecimal rangeBD = BigDecimal.valueOf(range.getMaximum()).subtract(minBD).add(BigDecimal.ONE);
BigDecimal valueBD = BigDecimal.valueOf(value).subtract(minBD);
BigDecimal fraction = valueBD.divide(rangeBD, 9, RoundingMode.FLOOR);
// stripTrailingZeros bug
return fraction.compareTo(BigDecimal.ZERO) == 0 ? BigDecimal.ZERO : fraction.stripTrailingZeros();
}
/**
* Converts a fraction from 0 to 1 for this field to a value.
*
* The fractional value must be between 0 (inclusive) and 1 (exclusive).
* It can only be returned if the {@link TemporalField#range() value range} is fixed.
* The value is obtained by calculation from the field range and a rounding
* mode of {@link RoundingMode#FLOOR FLOOR}.
* The calculation is inaccurate if the values do not run continuously from smallest to largest.
*
* For example, the fractional second-of-minute of 0.25 would be converted to 15,
* assuming the standard definition of 60 seconds in a minute.
*
* @param fraction the fraction to convert, not null
* @return the value of the field, valid for this rule
* @throws DateTimeException if the value cannot be converted
*/
private long convertFromFraction(BigDecimal fraction) {
ValueRange range = field.range();
BigDecimal minBD = BigDecimal.valueOf(range.getMinimum());
BigDecimal rangeBD = BigDecimal.valueOf(range.getMaximum()).subtract(minBD).add(BigDecimal.ONE);
BigDecimal valueBD = fraction.multiply(rangeBD).setScale(0, RoundingMode.FLOOR).add(minBD);
return valueBD.longValueExact();
}
@Override
public String toString() {
String decimal = (decimalPoint ? ",DecimalPoint" : "");
return "Fraction(" + field + "," + minWidth + "," + maxWidth + decimal + ")";
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses field text.
*/
static final class TextPrinterParser implements DateTimePrinterParser {
private final TemporalField field;
private final TextStyle textStyle;
private final DateTimeTextProvider provider;
/**
* The cached number printer parser.
* Immutable and volatile, so no synchronization needed.
*/
private volatile NumberPrinterParser numberPrinterParser;
/**
* Constructor.
*
* @param field the field to output, not null
* @param textStyle the text style, not null
* @param provider the text provider, not null
*/
TextPrinterParser(TemporalField field, TextStyle textStyle, DateTimeTextProvider provider) {
// validated by caller
this.field = field;
this.textStyle = textStyle;
this.provider = provider;
}
@Override
public boolean print(DateTimePrintContext context, StringBuilder buf) {
Long value = context.getValue(field);
if (value == null) {
return false;
}
String text = provider.getText(field, value, textStyle, context.getLocale());
if (text == null) {
return numberPrinterParser().print(context, buf);
}
buf.append(text);
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence parseText, int position) {
int length = parseText.length();
if (position < 0 || position > length) {
throw new IndexOutOfBoundsException();
}
TextStyle style = (context.isStrict() ? textStyle : null);
Iterator> it = provider.getTextIterator(field, style, context.getLocale());
if (it != null) {
while (it.hasNext()) {
Entry entry = it.next();
String itText = entry.getKey();
if (context.subSequenceEquals(itText, 0, parseText, position, itText.length())) {
return context.setParsedField(field, entry.getValue(), position, position + itText.length());
}
}
if (context.isStrict()) {
return ~position;
}
}
return numberPrinterParser().parse(context, parseText, position);
}
/**
* Create and cache a number printer parser.
* @return the number printer parser for this field, not null
*/
private NumberPrinterParser numberPrinterParser() {
if (numberPrinterParser == null) {
numberPrinterParser = new NumberPrinterParser(field, 1, 19, SignStyle.NORMAL);
}
return numberPrinterParser;
}
@Override
public String toString() {
if (textStyle == TextStyle.FULL) {
return "Text(" + field + ")";
}
return "Text(" + field + "," + textStyle + ")";
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses an ISO-8601 instant.
*/
static final class InstantPrinterParser implements DateTimePrinterParser {
// days in a 400 year cycle = 146097
// days in a 10,000 year cycle = 146097 * 25
// seconds per day = 86400
private static final long SECONDS_PER_10000_YEARS = 146097L * 25L * 86400L;
private static final long SECONDS_0000_TO_1970 = ((146097L * 5L) - (30L * 365L + 7L)) * 86400L;
private final int fractionalDigits;
InstantPrinterParser(int fractionalDigits) {
this.fractionalDigits = fractionalDigits;
}
@Override
public boolean print(DateTimePrintContext context, StringBuilder buf) {
// use INSTANT_SECONDS, thus this code is not bound by Instant.MAX
Long inSecs = context.getValue(INSTANT_SECONDS);
Long inNanos = 0L;
if (context.getTemporal().isSupported(NANO_OF_SECOND)) {
inNanos = context.getTemporal().getLong(NANO_OF_SECOND);
}
if (inSecs == null) {
return false;
}
long inSec = inSecs;
int inNano = NANO_OF_SECOND.checkValidIntValue(inNanos);
if (inSec >= -SECONDS_0000_TO_1970) {
// current era
long zeroSecs = inSec - SECONDS_PER_10000_YEARS + SECONDS_0000_TO_1970;
long hi = Jdk8Methods.floorDiv(zeroSecs, SECONDS_PER_10000_YEARS) + 1;
long lo = Jdk8Methods.floorMod(zeroSecs, SECONDS_PER_10000_YEARS);
LocalDateTime ldt = LocalDateTime.ofEpochSecond(lo - SECONDS_0000_TO_1970, 0, ZoneOffset.UTC);
if (hi > 0) {
buf.append('+').append(hi);
}
buf.append(ldt);
if (ldt.getSecond() == 0) {
buf.append(":00");
}
} else {
// before current era
long zeroSecs = inSec + SECONDS_0000_TO_1970;
long hi = zeroSecs / SECONDS_PER_10000_YEARS;
long lo = zeroSecs % SECONDS_PER_10000_YEARS;
LocalDateTime ldt = LocalDateTime.ofEpochSecond(lo - SECONDS_0000_TO_1970, 0, ZoneOffset.UTC);
int pos = buf.length();
buf.append(ldt);
if (ldt.getSecond() == 0) {
buf.append(":00");
}
if (hi < 0) {
if (ldt.getYear() == -10000) {
buf.replace(pos, pos + 2, Long.toString(hi - 1));
} else if (lo == 0) {
buf.insert(pos, hi);
} else {
buf.insert(pos + 1, Math.abs(hi));
}
}
}
//fraction
if (fractionalDigits == -2) {
if (inNano != 0) {
buf.append('.');
if (inNano % 1000000 == 0) {
buf.append(Integer.toString((inNano / 1000000) + 1000).substring(1));
} else if (inNano % 1000 == 0) {
buf.append(Integer.toString((inNano / 1000) + 1000000).substring(1));
} else {
buf.append(Integer.toString((inNano) + 1000000000).substring(1));
}
}
} else if (fractionalDigits > 0 || (fractionalDigits == -1 && inNano > 0)) {
buf.append('.');
int div = 100000000;
for (int i = 0; ((fractionalDigits == -1 && inNano > 0) || i < fractionalDigits); i++) {
int digit = inNano / div;
buf.append((char) (digit + '0'));
inNano = inNano - (digit * div);
div = div / 10;
}
}
buf.append('Z');
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
// new context to avoid overwriting fields like year/month/day
DateTimeParseContext newContext = context.copy();
int minDigits = (fractionalDigits < 0 ? 0 : fractionalDigits);
int maxDigits = (fractionalDigits < 0 ? 9 : fractionalDigits);
CompositePrinterParser parser = new DateTimeFormatterBuilder()
.append(DateTimeFormatter.ISO_LOCAL_DATE).appendLiteral('T')
.appendValue(HOUR_OF_DAY, 2).appendLiteral(':').appendValue(MINUTE_OF_HOUR, 2).appendLiteral(':')
.appendValue(SECOND_OF_MINUTE, 2).appendFraction(NANO_OF_SECOND, minDigits, maxDigits, true).appendLiteral('Z')
.toFormatter().toPrinterParser(false);
int pos = parser.parse(newContext, text, position);
if (pos < 0) {
return pos;
}
// parser restricts most fields to 2 digits, so definitely int
// correctly parsed nano is also guaranteed to be valid
long yearParsed = newContext.getParsed(YEAR);
int month = newContext.getParsed(MONTH_OF_YEAR).intValue();
int day = newContext.getParsed(DAY_OF_MONTH).intValue();
int hour = newContext.getParsed(HOUR_OF_DAY).intValue();
int min = newContext.getParsed(MINUTE_OF_HOUR).intValue();
Long secVal = newContext.getParsed(SECOND_OF_MINUTE);
Long nanoVal = newContext.getParsed(NANO_OF_SECOND);
int sec = (secVal != null ? secVal.intValue() : 0);
int nano = (nanoVal != null ? nanoVal.intValue() : 0);
int year = (int) yearParsed % 10000;
int days = 0;
if (hour == 24 && min == 0 && sec == 0 && nano == 0) {
hour = 0;
days = 1;
} else if (hour == 23 && min == 59 && sec == 60) {
context.setParsedLeapSecond();
sec = 59;
}
long instantSecs;
try {
LocalDateTime ldt = LocalDateTime.of(year, month, day, hour, min, sec, 0).plusDays(days);
instantSecs = ldt.toEpochSecond(ZoneOffset.UTC);
instantSecs += Jdk8Methods.safeMultiply(yearParsed / 10000L, SECONDS_PER_10000_YEARS);
} catch (RuntimeException ex) {
return ~position;
}
int successPos = pos;
successPos = context.setParsedField(INSTANT_SECONDS, instantSecs, position, successPos);
return context.setParsedField(NANO_OF_SECOND, nano, position, successPos);
}
@Override
public String toString() {
return "Instant()";
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses an offset ID.
*/
static final class OffsetIdPrinterParser implements DateTimePrinterParser {
static final String[] PATTERNS = new String[] {
"+HH", "+HHmm", "+HH:mm", "+HHMM", "+HH:MM", "+HHMMss", "+HH:MM:ss", "+HHMMSS", "+HH:MM:SS",
}; // order used in pattern builder
static final OffsetIdPrinterParser INSTANCE_ID = new OffsetIdPrinterParser("Z", "+HH:MM:ss");
private final String noOffsetText;
private final int type;
/**
* Constructor.
*
* @param noOffsetText the text to use for UTC, not null
* @param pattern the pattern
*/
OffsetIdPrinterParser(String noOffsetText, String pattern) {
Jdk8Methods.requireNonNull(noOffsetText, "noOffsetText");
Jdk8Methods.requireNonNull(pattern, "pattern");
this.noOffsetText = noOffsetText;
this.type = checkPattern(pattern);
}
private int checkPattern(String pattern) {
for (int i = 0; i < PATTERNS.length; i++) {
if (PATTERNS[i].equals(pattern)) {
return i;
}
}
throw new IllegalArgumentException("Invalid zone offset pattern: " + pattern);
}
@Override
public boolean print(DateTimePrintContext context, StringBuilder buf) {
Long offsetSecs = context.getValue(OFFSET_SECONDS);
if (offsetSecs == null) {
return false;
}
int totalSecs = Jdk8Methods.safeToInt(offsetSecs);
if (totalSecs == 0) {
buf.append(noOffsetText);
} else {
int absHours = Math.abs((totalSecs / 3600) % 100); // anything larger than 99 silently dropped
int absMinutes = Math.abs((totalSecs / 60) % 60);
int absSeconds = Math.abs(totalSecs % 60);
int bufPos = buf.length();
int output = absHours;
buf.append(totalSecs < 0 ? "-" : "+")
.append((char) (absHours / 10 + '0')).append((char) (absHours % 10 + '0'));
if (type >= 3 || (type >= 1 && absMinutes > 0)) {
buf.append((type % 2) == 0 ? ":" : "")
.append((char) (absMinutes / 10 + '0')).append((char) (absMinutes % 10 + '0'));
output += absMinutes;
if (type >= 7 || (type >= 5 && absSeconds > 0)) {
buf.append((type % 2) == 0 ? ":" : "")
.append((char) (absSeconds / 10 + '0')).append((char) (absSeconds % 10 + '0'));
output += absSeconds;
}
}
if (output == 0) {
buf.setLength(bufPos);
buf.append(noOffsetText);
}
}
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
int length = text.length();
int noOffsetLen = noOffsetText.length();
if (noOffsetLen == 0) {
if (position == length) {
return context.setParsedField(OFFSET_SECONDS, 0, position, position);
}
} else {
if (position == length) {
return ~position;
}
if (context.subSequenceEquals(text, position, noOffsetText, 0, noOffsetLen)) {
return context.setParsedField(OFFSET_SECONDS, 0, position, position + noOffsetLen);
}
}
// parse normal plus/minus offset
char sign = text.charAt(position); // IOOBE if invalid position
if (sign == '+' || sign == '-') {
// starts
int negative = (sign == '-' ? -1 : 1);
int[] array = new int[4];
array[0] = position + 1;
if ((parseNumber(array, 1, text, true) ||
parseNumber(array, 2, text, type >=3) ||
parseNumber(array, 3, text, false)) == false) {
// success
long offsetSecs = negative * (array[1] * 3600L + array[2] * 60L + array[3]);
return context.setParsedField(OFFSET_SECONDS, offsetSecs, position, array[0]);
}
}
// handle special case of empty no offset text
if (noOffsetLen == 0) {
return context.setParsedField(OFFSET_SECONDS, 0, position, position + noOffsetLen);
}
return ~position;
}
/**
* Parse a two digit zero-prefixed number.
*
* @param array the array of parsed data, 0=pos,1=hours,2=mins,3=secs, not null
* @param arrayIndex the index to parse the value into
* @param parseText the offset ID, not null
* @param required whether this number is required
* @return true if an error occurred
*/
private boolean parseNumber(int[] array, int arrayIndex, CharSequence parseText, boolean required) {
if ((type + 3) / 2 < arrayIndex) {
return false; // ignore seconds/minutes
}
int pos = array[0];
if ((type % 2) == 0 && arrayIndex > 1) {
if (pos + 1 > parseText.length() || parseText.charAt(pos) != ':') {
return required;
}
pos++;
}
if (pos + 2 > parseText.length()) {
return required;
}
char ch1 = parseText.charAt(pos++);
char ch2 = parseText.charAt(pos++);
if (ch1 < '0' || ch1 > '9' || ch2 < '0' || ch2 > '9') {
return required;
}
int value = (ch1 - 48) * 10 + (ch2 - 48);
if (value < 0 || value > 59) {
return required;
}
array[arrayIndex] = value;
array[0] = pos;
return false;
}
@Override
public String toString() {
String converted = noOffsetText.replace("'", "''");
return "Offset(" + PATTERNS[type] + ",'" + converted + "')";
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses a localized offset.
*/
static final class LocalizedOffsetPrinterParser implements DateTimePrinterParser {
private final TextStyle style;
public LocalizedOffsetPrinterParser(TextStyle style) {
this.style = style;
}
@Override
public boolean print(DateTimePrintContext context, StringBuilder buf) {
Long offsetSecs = context.getValue(OFFSET_SECONDS);
if (offsetSecs == null) {
return false;
}
buf.append("GMT");
if (style == TextStyle.FULL) {
return new OffsetIdPrinterParser("", "+HH:MM:ss").print(context, buf);
}
int totalSecs = Jdk8Methods.safeToInt(offsetSecs);
if (totalSecs != 0) {
int absHours = Math.abs((totalSecs / 3600) % 100); // anything larger than 99 silently dropped
int absMinutes = Math.abs((totalSecs / 60) % 60);
int absSeconds = Math.abs(totalSecs % 60);
buf.append(totalSecs < 0 ? "-" : "+").append(absHours);
if (absMinutes > 0 || absSeconds > 0) {
buf.append(":")
.append((char) (absMinutes / 10 + '0')).append((char) (absMinutes % 10 + '0'));
if (absSeconds > 0) {
buf.append(":")
.append((char) (absSeconds / 10 + '0')).append((char) (absSeconds % 10 + '0'));
}
}
}
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
if (context.subSequenceEquals(text, position, "GMT", 0, 3) == false) {
return ~position;
}
position += 3;
if (style == TextStyle.FULL) {
return new OffsetIdPrinterParser("", "+HH:MM:ss").parse(context, text, position);
}
int end = text.length();
if (position == end) {
return context.setParsedField(OFFSET_SECONDS, 0, position, position);
}
char sign = text.charAt(position);
if (sign != '+' && sign != '-') {
return context.setParsedField(OFFSET_SECONDS, 0, position, position);
}
int negative = (sign == '-' ? -1 : 1);
if (position == end) {
return ~position;
}
position++;
// hour
char ch = text.charAt(position);
if (ch < '0' || ch > '9') {
return ~position;
}
position++;
int hour = ((int) (ch - 48));
if (position != end) {
ch = text.charAt(position);
if (ch >= '0' && ch <= '9') {
hour = hour * 10 + ((int) (ch - 48));
if (hour > 23) {
return ~position;
}
position++;
}
}
if (position == end || text.charAt(position) != ':') {
int offset = negative * 3600 * hour;
return context.setParsedField(OFFSET_SECONDS, offset, position, position);
}
position++;
// minute
if (position > end - 2) {
return ~position;
}
ch = text.charAt(position);
if (ch < '0' || ch > '9') {
return ~position;
}
position++;
int min = ((int) (ch - 48));
ch = text.charAt(position);
if (ch < '0' || ch > '9') {
return ~position;
}
position++;
min = min * 10 + ((int) (ch - 48));
if (min > 59) {
return ~position;
}
if (position == end || text.charAt(position) != ':') {
int offset = negative * (3600 * hour + 60 * min);
return context.setParsedField(OFFSET_SECONDS, offset, position, position);
}
position++;
// second
if (position > end - 2) {
return ~position;
}
ch = text.charAt(position);
if (ch < '0' || ch > '9') {
return ~position;
}
position++;
int sec = ((int) (ch - 48));
ch = text.charAt(position);
if (ch < '0' || ch > '9') {
return ~position;
}
position++;
sec = sec * 10 + ((int) (ch - 48));
if (sec > 59) {
return ~position;
}
int offset = negative * (3600 * hour + 60 * min + sec);
return context.setParsedField(OFFSET_SECONDS, offset, position, position);
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses a zone ID.
*/
static final class ZoneTextPrinterParser implements DateTimePrinterParser {
/** The text style to output. */
private static final Comparator LENGTH_COMPARATOR = new Comparator() {
@Override
public int compare(String str1, String str2) {
int cmp = str2.length() - str1.length();
if (cmp == 0) {
cmp = str1.compareTo(str2);
}
return cmp;
}
};
/** The text style to output. */
private final TextStyle textStyle;
ZoneTextPrinterParser(TextStyle textStyle) {
this.textStyle = Jdk8Methods.requireNonNull(textStyle, "textStyle");
}
//-----------------------------------------------------------------------
@Override
public boolean print(DateTimePrintContext context, StringBuilder buf) {
ZoneId zone = context.getValue(TemporalQueries.zoneId());
if (zone == null) {
return false;
}
if (zone.normalized() instanceof ZoneOffset) {
buf.append(zone.getId());
return true;
}
TemporalAccessor temporal = context.getTemporal();
boolean daylight = false;
if (temporal.isSupported(INSTANT_SECONDS)) {
Instant instant = Instant.ofEpochSecond(temporal.getLong(INSTANT_SECONDS));
daylight = zone.getRules().isDaylightSavings(instant);
}
TimeZone tz = TimeZone.getTimeZone(zone.getId());
int tzstyle = (textStyle.asNormal() == TextStyle.FULL ? TimeZone.LONG : TimeZone.SHORT);
String text = tz.getDisplayName(daylight, tzstyle, context.getLocale());
buf.append(text);
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
// this is a poor implementation that handles some but not all of the spec
// JDK8 has a lot of extra information here
Map ids = new TreeMap(LENGTH_COMPARATOR);
for (String id : ZoneId.getAvailableZoneIds()) {
ids.put(id, id);
TimeZone tz = TimeZone.getTimeZone(id);
int tzstyle = (textStyle.asNormal() == TextStyle.FULL ? TimeZone.LONG : TimeZone.SHORT);
ids.put(tz.getDisplayName(false, tzstyle, context.getLocale()), id);
ids.put(tz.getDisplayName(true, tzstyle, context.getLocale()), id);
}
for (Entry entry : ids.entrySet()) {
String name = entry.getKey();
if (context.subSequenceEquals(text, position, name, 0, name.length())) {
context.setParsed(ZoneId.of(entry.getValue()));
return position + name.length();
}
}
return ~position;
}
@Override
public String toString() {
return "ZoneText(" + textStyle + ")";
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses a zone ID.
*/
static final class ZoneIdPrinterParser implements DateTimePrinterParser {
private final TemporalQuery query;
private final String description;
ZoneIdPrinterParser(TemporalQuery query, String description) {
this.query = query;
this.description = description;
}
//-----------------------------------------------------------------------
@Override
public boolean print(DateTimePrintContext context, StringBuilder buf) {
ZoneId zone = context.getValue(query);
if (zone == null) {
return false;
}
buf.append(zone.getId());
return true;
}
//-----------------------------------------------------------------------
/**
* The cached tree to speed up parsing.
*/
private static volatile Entry cachedSubstringTree;
/**
* This implementation looks for the longest matching string.
* For example, parsing Etc/GMT-2 will return Etc/GMC-2 rather than just
* Etc/GMC although both are valid.
*
* This implementation uses a tree to search for valid time-zone names in
* the parseText. The top level node of the tree has a length equal to the
* length of the shortest time-zone as well as the beginning characters of
* all other time-zones.
*/
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
int length = text.length();
if (position > length) {
throw new IndexOutOfBoundsException();
}
if (position == length) {
return ~position;
}
// handle fixed time-zone IDs
char nextChar = text.charAt(position);
if (nextChar == '+' || nextChar == '-') {
DateTimeParseContext newContext = context.copy();
int endPos = OffsetIdPrinterParser.INSTANCE_ID.parse(newContext, text, position);
if (endPos < 0) {
return endPos;
}
int offset = (int) newContext.getParsed(OFFSET_SECONDS).longValue();
ZoneId zone = ZoneOffset.ofTotalSeconds(offset);
context.setParsed(zone);
return endPos;
} else if (length >= position + 2) {
char nextNextChar = text.charAt(position + 1);
if (context.charEquals(nextChar, 'U') &&
context.charEquals(nextNextChar, 'T')) {
if (length >= position + 3 &&
context.charEquals(text.charAt(position + 2), 'C')) {
return parsePrefixedOffset(context, text, position, position + 3);
}
return parsePrefixedOffset(context, text, position, position + 2);
} else if (context.charEquals(nextChar, 'G') &&
length >= position + 3 &&
context.charEquals(nextNextChar, 'M') &&
context.charEquals(text.charAt(position + 2), 'T')) {
return parsePrefixedOffset(context, text, position, position + 3);
}
}
// prepare parse tree
Set regionIds = ZoneRulesProvider.getAvailableZoneIds();
final int regionIdsSize = regionIds.size();
Entry cached = cachedSubstringTree;
if (cached == null || cached.getKey() != regionIdsSize) {
synchronized (this) {
cached = cachedSubstringTree;
if (cached == null || cached.getKey() != regionIdsSize) {
cachedSubstringTree = cached = new SimpleImmutableEntry(regionIdsSize, prepareParser(regionIds));
}
}
}
SubstringTree tree = cached.getValue();
// parse
String parsedZoneId = null;
String lastZoneId = null;
while (tree != null) {
int nodeLength = tree.length;
if (position + nodeLength > length) {
break;
}
lastZoneId = parsedZoneId;
parsedZoneId = text.subSequence(position, position + nodeLength).toString();
tree = tree.get(parsedZoneId, context.isCaseSensitive());
}
ZoneId zone = convertToZone(regionIds, parsedZoneId, context.isCaseSensitive());
if (zone == null) {
zone = convertToZone(regionIds, lastZoneId, context.isCaseSensitive());
if (zone == null) {
if (context.charEquals(nextChar, 'Z')) {
context.setParsed(ZoneOffset.UTC);
return position + 1;
}
return ~position;
}
parsedZoneId = lastZoneId;
}
context.setParsed(zone);
return position + parsedZoneId.length();
}
private ZoneId convertToZone(Set regionIds, String parsedZoneId, boolean caseSensitive) {
if (parsedZoneId == null) {
return null;
}
if (caseSensitive) {
return (regionIds.contains(parsedZoneId) ? ZoneId.of(parsedZoneId) : null);
} else {
for (String regionId : regionIds) {
if (regionId.equalsIgnoreCase(parsedZoneId)) {
return ZoneId.of(regionId);
}
}
return null;
}
}
private int parsePrefixedOffset(DateTimeParseContext context, CharSequence text, int prefixPos, int position) {
String prefix = text.subSequence(prefixPos, position).toString().toUpperCase();
DateTimeParseContext newContext = context.copy();
if (position < text.length() && context.charEquals(text.charAt(position), 'Z')) {
context.setParsed(ZoneId.ofOffset(prefix, ZoneOffset.UTC));
return position;
}
int endPos = OffsetIdPrinterParser.INSTANCE_ID.parse(newContext, text, position);
if (endPos < 0) {
context.setParsed(ZoneId.ofOffset(prefix, ZoneOffset.UTC));
return position;
}
int offsetSecs = (int) newContext.getParsed(OFFSET_SECONDS).longValue();
ZoneOffset offset = ZoneOffset.ofTotalSeconds(offsetSecs);
context.setParsed(ZoneId.ofOffset(prefix, offset));
return endPos;
}
//-----------------------------------------------------------------------
/**
* Model a tree of substrings to make the parsing easier. Due to the nature
* of time-zone names, it can be faster to parse based in unique substrings
* rather than just a character by character match.
*
* For example, to parse America/Denver we can look at the first two
* character "Am". We then notice that the shortest time-zone that starts
* with Am is America/Nome which is 12 characters long. Checking the first
* 12 characters of America/Denver gives America/Denv which is a substring
* of only 1 time-zone: America/Denver. Thus, with just 3 comparisons that
* match can be found.
*
* This structure maps substrings to substrings of a longer length. Each
* node of the tree contains a length and a map of valid substrings to
* sub-nodes. The parser gets the length from the root node. It then
* extracts a substring of that length from the parseText. If the map
* contains the substring, it is set as the possible time-zone and the
* sub-node for that substring is retrieved. The process continues until the
* substring is no longer found, at which point the matched text is checked
* against the real time-zones.
*/
private static final class SubstringTree {
/**
* The length of the substring this node of the tree contains.
* Subtrees will have a longer length.
*/
final int length;
/**
* Map of a substring to a set of substrings that contain the key.
*/
private final Map substringMap = new HashMap();
/**
* Map of a substring to a set of substrings that contain the key.
*/
private final Map substringMapCI = new HashMap();
/**
* Constructor.
*
* @param length the length of this tree
*/
private SubstringTree(int length) {
this.length = length;
}
private SubstringTree get(CharSequence substring2, boolean caseSensitive) {
if (caseSensitive) {
return substringMap.get(substring2);
} else {
return substringMapCI.get(substring2.toString().toLowerCase(Locale.ENGLISH));
}
}
/**
* Values must be added from shortest to longest.
*
* @param newSubstring the substring to add, not null
*/
private void add(String newSubstring) {
int idLen = newSubstring.length();
if (idLen == length) {
substringMap.put(newSubstring, null);
substringMapCI.put(newSubstring.toLowerCase(Locale.ENGLISH), null);
} else if (idLen > length) {
String substring = newSubstring.substring(0, length);
SubstringTree parserTree = substringMap.get(substring);
if (parserTree == null) {
parserTree = new SubstringTree(idLen);
substringMap.put(substring, parserTree);
substringMapCI.put(substring.toLowerCase(Locale.ENGLISH), parserTree);
}
parserTree.add(newSubstring);
}
}
}
/**
* Builds an optimized parsing tree.
*
* @param availableIDs the available IDs, not null, not empty
* @return the tree, not null
*/
private static SubstringTree prepareParser(Set availableIDs) {
// sort by length
List ids = new ArrayList(availableIDs);
Collections.sort(ids, LENGTH_SORT);
// build the tree
SubstringTree tree = new SubstringTree(ids.get(0).length());
for (String id : ids) {
tree.add(id);
}
return tree;
}
//-----------------------------------------------------------------------
@Override
public String toString() {
return description;
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses a chronology.
*/
static final class ChronoPrinterParser implements DateTimePrinterParser {
/** The text style to output, null means the ID. */
private final TextStyle textStyle;
ChronoPrinterParser(TextStyle textStyle) {
// validated by caller
this.textStyle = textStyle;
}
@Override
public boolean print(DateTimePrintContext context, StringBuilder buf) {
Chronology chrono = context.getValue(TemporalQueries.chronology());
if (chrono == null) {
return false;
}
if (textStyle == null) {
buf.append(chrono.getId());
} else {
ResourceBundle bundle = ResourceBundle.getBundle(
"org.threeten.bp.format.ChronologyText", context.getLocale(), DateTimeFormatterBuilder.class.getClassLoader());
try {
String text = bundle.getString(chrono.getId());
buf.append(text);
} catch (MissingResourceException ex) {
buf.append(chrono.getId());
}
}
return true;
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
// simple looping parser to find the chronology
if (position < 0 || position > text.length()) {
throw new IndexOutOfBoundsException();
}
Set chronos = Chronology.getAvailableChronologies();
Chronology bestMatch = null;
int matchLen = -1;
for (Chronology chrono : chronos) {
String id = chrono.getId();
int idLen = id.length();
if (idLen > matchLen && context.subSequenceEquals(text, position, id, 0, idLen)) {
bestMatch = chrono;
matchLen = idLen;
}
}
if (bestMatch == null) {
return ~position;
}
context.setParsed(bestMatch);
return position + matchLen;
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses a localized pattern.
*/
static final class LocalizedPrinterParser implements DateTimePrinterParser {
private final FormatStyle dateStyle;
private final FormatStyle timeStyle;
/**
* Constructor.
*
* @param dateStyle the date style to use, may be null
* @param timeStyle the time style to use, may be null
*/
LocalizedPrinterParser(FormatStyle dateStyle, FormatStyle timeStyle) {
// validated by caller
this.dateStyle = dateStyle;
this.timeStyle = timeStyle;
}
@Override
public boolean print(DateTimePrintContext context, StringBuilder buf) {
Chronology chrono = Chronology.from(context.getTemporal());
return formatter(context.getLocale(), chrono).toPrinterParser(false).print(context, buf);
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
Chronology chrono = context.getEffectiveChronology();
return formatter(context.getLocale(), chrono).toPrinterParser(false).parse(context, text, position);
}
/**
* Gets the formatter to use.
*
* @param locale the locale to use, not null
* @return the formatter, not null
* @throws IllegalArgumentException if the formatter cannot be found
*/
private DateTimeFormatter formatter(Locale locale, Chronology chrono) {
return DateTimeFormatStyleProvider.getInstance()
.getFormatter(dateStyle, timeStyle, chrono, locale);
}
@Override
public String toString() {
return "Localized(" + (dateStyle != null ? dateStyle : "") + "," +
(timeStyle != null ? timeStyle : "") + ")";
}
}
//-----------------------------------------------------------------------
/**
* Prints or parses a localized pattern.
*/
static final class WeekFieldsPrinterParser implements DateTimePrinterParser {
private final char letter;
private final int count;
public WeekFieldsPrinterParser(char letter, int count) {
this.letter = letter;
this.count = count;
}
@Override
public boolean print(DateTimePrintContext context, StringBuilder buf) {
WeekFields weekFields = WeekFields.of(context.getLocale());
DateTimePrinterParser pp = evaluate(weekFields);
return pp.print(context, buf);
}
@Override
public int parse(DateTimeParseContext context, CharSequence text, int position) {
WeekFields weekFields = WeekFields.of(context.getLocale());
DateTimePrinterParser pp = evaluate(weekFields);
return pp.parse(context, text, position);
}
private DateTimePrinterParser evaluate(WeekFields weekFields) {
DateTimePrinterParser pp = null;
switch (letter) {
case 'e': // day-of-week
pp = new NumberPrinterParser(weekFields.dayOfWeek(), count, 2, SignStyle.NOT_NEGATIVE);
break;
case 'c': // day-of-week
pp = new NumberPrinterParser(weekFields.dayOfWeek(), count, 2, SignStyle.NOT_NEGATIVE);
break;
case 'w': // week-of-year
pp = new NumberPrinterParser(weekFields.weekOfWeekBasedYear(), count, 2, SignStyle.NOT_NEGATIVE);
break;
case 'W': // week-of-month
pp = new NumberPrinterParser(weekFields.weekOfMonth(), 1, 2, SignStyle.NOT_NEGATIVE);
break;
case 'Y': // weekyear
if (count == 2) {
pp = new ReducedPrinterParser(weekFields.weekBasedYear(), 2, 2, 0, ReducedPrinterParser.BASE_DATE);
} else {
pp = new NumberPrinterParser(weekFields.weekBasedYear(), count, 19,
(count < 4) ? SignStyle.NORMAL : SignStyle.EXCEEDS_PAD, -1);
}
break;
}
return pp;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder(30);
sb.append("Localized(");
if (letter == 'Y') {
if (count == 1) {
sb.append("WeekBasedYear");
} else if (count == 2) {
sb.append("ReducedValue(WeekBasedYear,2,2,2000-01-01)");
} else {
sb.append("WeekBasedYear,").append(count).append(",")
.append(19).append(",")
.append((count < 4) ? SignStyle.NORMAL : SignStyle.EXCEEDS_PAD);
}
} else {
if (letter == 'c' || letter == 'e') {
sb.append("DayOfWeek");
} else if (letter == 'w') {
sb.append("WeekOfWeekBasedYear");
} else if (letter == 'W') {
sb.append("WeekOfMonth");
}
sb.append(",");
sb.append(count);
}
sb.append(")");
return sb.toString();
}
}
//-------------------------------------------------------------------------
/**
* Length comparator.
*/
static final Comparator LENGTH_SORT = new Comparator() {
@Override
public int compare(String str1, String str2) {
return str1.length() == str2.length() ? str1.compareTo(str2) : str1.length() - str2.length();
}
};
}