All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.threeten.bp.Duration Maven / Gradle / Ivy

Go to download

Backport of JSR-310 from JDK 8 to JDK 7 and JDK 6. NOT an implementation of the JSR.

There is a newer version: 1.7.0
Show newest version
/*
 * Copyright (c) 2007-present, Stephen Colebourne & Michael Nascimento Santos
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 *  * Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 *  * Neither the name of JSR-310 nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package org.threeten.bp;

import static org.threeten.bp.LocalTime.SECONDS_PER_DAY;
import static org.threeten.bp.LocalTime.SECONDS_PER_HOUR;
import static org.threeten.bp.LocalTime.SECONDS_PER_MINUTE;
import static org.threeten.bp.temporal.ChronoField.NANO_OF_SECOND;
import static org.threeten.bp.temporal.ChronoUnit.DAYS;
import static org.threeten.bp.temporal.ChronoUnit.NANOS;
import static org.threeten.bp.temporal.ChronoUnit.SECONDS;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.io.InvalidObjectException;
import java.io.ObjectStreamException;
import java.io.Serializable;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import org.threeten.bp.format.DateTimeParseException;
import org.threeten.bp.jdk8.Jdk8Methods;
import org.threeten.bp.temporal.ChronoField;
import org.threeten.bp.temporal.ChronoUnit;
import org.threeten.bp.temporal.Temporal;
import org.threeten.bp.temporal.TemporalAmount;
import org.threeten.bp.temporal.TemporalUnit;
import org.threeten.bp.temporal.UnsupportedTemporalTypeException;

/**
 * A time-based amount of time, such as '34.5 seconds'.
 * 

* This class models a quantity or amount of time in terms of seconds and nanoseconds. * It can be accessed using other duration-based units, such as minutes and hours. * In addition, the {@link ChronoUnit#DAYS DAYS} unit can be used and is treated as * exactly equal to 24 hours, thus ignoring daylight savings effects. * See {@link Period} for the date-based equivalent to this class. *

* A physical duration could be of infinite length. * For practicality, the duration is stored with constraints similar to {@link Instant}. * The duration uses nanosecond resolution with a maximum value of the seconds that can * be held in a {@code long}. This is greater than the current estimated age of the universe. *

* The range of a duration requires the storage of a number larger than a {@code long}. * To achieve this, the class stores a {@code long} representing seconds and an {@code int} * representing nanosecond-of-second, which will always be between 0 and 999,999,999. *

* The duration is measured in "seconds", but these are not necessarily identical to * the scientific "SI second" definition based on atomic clocks. * This difference only impacts durations measured near a leap-second and should not affect * most applications. * See {@link Instant} for a discussion as to the meaning of the second and time-scales. * *

Specification for implementors

* This class is immutable and thread-safe. */ public final class Duration implements TemporalAmount, Comparable, Serializable { /** * Constant for a duration of zero. */ public static final Duration ZERO = new Duration(0, 0); /** * Serialization version. */ private static final long serialVersionUID = 3078945930695997490L; /** * Constant for nanos per second. */ private static final int NANOS_PER_SECOND = 1000000000; /** * Constant for nanos per milli. */ private static final int NANOS_PER_MILLI = 1000000; /** * Constant for nanos per second. */ private static final BigInteger BI_NANOS_PER_SECOND = BigInteger.valueOf(NANOS_PER_SECOND); /** * The pattern for parsing. */ private final static Pattern PATTERN = Pattern.compile("([-+]?)P(?:([-+]?[0-9]+)D)?" + "(T(?:([-+]?[0-9]+)H)?(?:([-+]?[0-9]+)M)?(?:([-+]?[0-9]+)(?:[.,]([0-9]{0,9}))?S)?)?", Pattern.CASE_INSENSITIVE); /** * The number of seconds in the duration. */ private final long seconds; /** * The number of nanoseconds in the duration, expressed as a fraction of the * number of seconds. This is always positive, and never exceeds 999,999,999. */ private final int nanos; //----------------------------------------------------------------------- /** * Obtains an instance of {@code Duration} from a number of standard 24 hour days. *

* The seconds are calculated based on the standard definition of a day, * where each day is 86400 seconds which implies a 24 hour day. * The nanosecond in second field is set to zero. * * @param days the number of days, positive or negative * @return a {@code Duration}, not null * @throws ArithmeticException if the input days exceeds the capacity of {@code Duration} */ public static Duration ofDays(long days) { return create(Jdk8Methods.safeMultiply(days, 86400), 0); } /** * Obtains an instance of {@code Duration} from a number of standard length hours. *

* The seconds are calculated based on the standard definition of an hour, * where each hour is 3600 seconds. * The nanosecond in second field is set to zero. * * @param hours the number of hours, positive or negative * @return a {@code Duration}, not null * @throws ArithmeticException if the input hours exceeds the capacity of {@code Duration} */ public static Duration ofHours(long hours) { return create(Jdk8Methods.safeMultiply(hours, 3600), 0); } /** * Obtains an instance of {@code Duration} from a number of standard length minutes. *

* The seconds are calculated based on the standard definition of a minute, * where each minute is 60 seconds. * The nanosecond in second field is set to zero. * * @param minutes the number of minutes, positive or negative * @return a {@code Duration}, not null * @throws ArithmeticException if the input minutes exceeds the capacity of {@code Duration} */ public static Duration ofMinutes(long minutes) { return create(Jdk8Methods.safeMultiply(minutes, 60), 0); } //----------------------------------------------------------------------- /** * Obtains an instance of {@code Duration} from a number of seconds. *

* The nanosecond in second field is set to zero. * * @param seconds the number of seconds, positive or negative * @return a {@code Duration}, not null */ public static Duration ofSeconds(long seconds) { return create(seconds, 0); } /** * Obtains an instance of {@code Duration} from a number of seconds * and an adjustment in nanoseconds. *

* This method allows an arbitrary number of nanoseconds to be passed in. * The factory will alter the values of the second and nanosecond in order * to ensure that the stored nanosecond is in the range 0 to 999,999,999. * For example, the following will result in the exactly the same duration: *

     *  Duration.ofSeconds(3, 1);
     *  Duration.ofSeconds(4, -999_999_999);
     *  Duration.ofSeconds(2, 1000_000_001);
     * 
* * @param seconds the number of seconds, positive or negative * @param nanoAdjustment the nanosecond adjustment to the number of seconds, positive or negative * @return a {@code Duration}, not null * @throws ArithmeticException if the adjustment causes the seconds to exceed the capacity of {@code Duration} */ public static Duration ofSeconds(long seconds, long nanoAdjustment) { long secs = Jdk8Methods.safeAdd(seconds, Jdk8Methods.floorDiv(nanoAdjustment, NANOS_PER_SECOND)); int nos = Jdk8Methods.floorMod(nanoAdjustment, NANOS_PER_SECOND); return create(secs, nos); } //----------------------------------------------------------------------- /** * Obtains an instance of {@code Duration} from a number of milliseconds. *

* The seconds and nanoseconds are extracted from the specified milliseconds. * * @param millis the number of milliseconds, positive or negative * @return a {@code Duration}, not null */ public static Duration ofMillis(long millis) { long secs = millis / 1000; int mos = (int) (millis % 1000); if (mos < 0) { mos += 1000; secs--; } return create(secs, mos * NANOS_PER_MILLI); } /** * Obtains an instance of {@code Duration} from a number of nanoseconds. *

* The seconds and nanoseconds are extracted from the specified nanoseconds. * * @param nanos the number of nanoseconds, positive or negative * @return a {@code Duration}, not null */ public static Duration ofNanos(long nanos) { long secs = nanos / NANOS_PER_SECOND; int nos = (int) (nanos % NANOS_PER_SECOND); if (nos < 0) { nos += NANOS_PER_SECOND; secs--; } return create(secs, nos); } //----------------------------------------------------------------------- /** * Obtains an instance of {@code Duration} from a duration in the specified unit. *

* The parameters represent the two parts of a phrase like '6 Hours'. For example: *

     *  Duration.of(3, SECONDS);
     *  Duration.of(465, HOURS);
     * 
* Only a subset of units are accepted by this method. * The unit must either have an {@link TemporalUnit#isDurationEstimated() exact duration} or * be {@link ChronoUnit#DAYS} which is treated as 24 hours. Other units throw an exception. * * @param amount the amount of the duration, measured in terms of the unit, positive or negative * @param unit the unit that the duration is measured in, must have an exact duration, not null * @return a {@code Duration}, not null * @throws DateTimeException if the period unit has an estimated duration * @throws ArithmeticException if a numeric overflow occurs */ public static Duration of(long amount, TemporalUnit unit) { return ZERO.plus(amount, unit); } //----------------------------------------------------------------------- /** * Obtains an instance of {@code Duration} from an amount. *

* This obtains a duration based on the specified amount. * A TemporalAmount represents an amount of time, which may be date-based * or time-based, which this factory extracts to a duration. *

* The conversion loops around the set of units from the amount and uses * the duration of the unit to calculate the total Duration. * Only a subset of units are accepted by this method. * The unit must either have an exact duration or be ChronoUnit.DAYS which * is treated as 24 hours. If any other units are found then an exception is thrown. * * @param amount the amount to convert, not null * @return a {@code Duration}, not null * @throws DateTimeException if the amount cannot be converted * @throws ArithmeticException if a numeric overflow occurs */ public static Duration from(TemporalAmount amount) { Jdk8Methods.requireNonNull(amount, "amount"); Duration duration = ZERO; for (TemporalUnit unit : amount.getUnits()) { duration = duration.plus(amount.get(unit), unit); } return duration; } //----------------------------------------------------------------------- /** * Obtains an instance of {@code Duration} representing the duration between two instants. *

* Obtains a {@code Duration} representing the duration between two instants. * This calculates the duration between two temporal objects of the same type. * The difference in seconds is calculated using {@link Temporal#until(Temporal, TemporalUnit)}. * The difference in nanoseconds is calculated using by querying the * {@link ChronoField#NANO_OF_SECOND NANO_OF_SECOND} field. *

* The result of this method can be a negative period if the end is before the start. * To guarantee to obtain a positive duration call abs() on the result. * * @param startInclusive the start instant, inclusive, not null * @param endExclusive the end instant, exclusive, not null * @return a {@code Duration}, not null * @throws DateTimeException if the seconds between the temporals cannot be obtained * @throws ArithmeticException if the calculation exceeds the capacity of {@code Duration} */ public static Duration between(Temporal startInclusive, Temporal endExclusive) { long secs = startInclusive.until(endExclusive, SECONDS); long nanos = 0; if (startInclusive.isSupported(NANO_OF_SECOND) && endExclusive.isSupported(NANO_OF_SECOND)) { try { long startNos = startInclusive.getLong(NANO_OF_SECOND); nanos = endExclusive.getLong(NANO_OF_SECOND) - startNos; if (secs > 0 && nanos < 0) { nanos += NANOS_PER_SECOND; } else if (secs < 0 && nanos > 0) { nanos -= NANOS_PER_SECOND; } else if (secs == 0 && nanos != 0) { // two possible meanings for result, so recalculate secs Temporal adjustedEnd = endExclusive.with(NANO_OF_SECOND, startNos); secs = startInclusive.until(adjustedEnd, SECONDS);; } } catch (DateTimeException ex2) { // ignore and only use seconds } catch (ArithmeticException ex2) { // ignore and only use seconds } } return ofSeconds(secs, nanos); } //----------------------------------------------------------------------- /** * Obtains a {@code Duration} from a text string such as {@code PnDTnHnMn.nS}. *

* This will parse a textual representation of a duration, including the * string produced by {@code toString()}. The formats accepted are based * on the ISO-8601 duration format {@code PnDTnHnMn.nS} with days * considered to be exactly 24 hours. *

* The string starts with an optional sign, denoted by the ASCII negative * or positive symbol. If negative, the whole period is negated. * The ASCII letter "P" is next in upper or lower case. * There are then four sections, each consisting of a number and a suffix. * The sections have suffixes in ASCII of "D", "H", "M" and "S" for * days, hours, minutes and seconds, accepted in upper or lower case. * The suffixes must occur in order. The ASCII letter "T" must occur before * the first occurrence, if any, of an hour, minute or second section. * At least one of the four sections must be present, and if "T" is present * there must be at least one section after the "T". * The number part of each section must consist of one or more ASCII digits. * The number may be prefixed by the ASCII negative or positive symbol. * The number of days, hours and minutes must parse to a {@code long}. * The number of seconds must parse to a {@code long} with optional fraction. * The decimal point may be either a dot or a comma. * The fractional part may have from zero to 9 digits. *

* The leading plus/minus sign, and negative values for other units are * not part of the ISO-8601 standard. *

* Examples: *

     *    "PT20.345S" -> parses as "20.345 seconds"
     *    "PT15M"     -> parses as "15 minutes" (where a minute is 60 seconds)
     *    "PT10H"     -> parses as "10 hours" (where an hour is 3600 seconds)
     *    "P2D"       -> parses as "2 days" (where a day is 24 hours or 86400 seconds)
     *    "P2DT3H4M"  -> parses as "2 days, 3 hours and 4 minutes"
     *    "P-6H3M"    -> parses as "-6 hours and +3 minutes"
     *    "-P6H3M"    -> parses as "-6 hours and -3 minutes"
     *    "-P-6H+3M"  -> parses as "+6 hours and -3 minutes"
     * 
* * @param text the text to parse, not null * @return the parsed duration, not null * @throws DateTimeParseException if the text cannot be parsed to a duration */ public static Duration parse(CharSequence text) { Jdk8Methods.requireNonNull(text, "text"); Matcher matcher = PATTERN.matcher(text); if (matcher.matches()) { // check for letter T but no time sections if ("T".equals(matcher.group(3)) == false) { boolean negate = "-".equals(matcher.group(1)); String dayMatch = matcher.group(2); String hourMatch = matcher.group(4); String minuteMatch = matcher.group(5); String secondMatch = matcher.group(6); String fractionMatch = matcher.group(7); if (dayMatch != null || hourMatch != null || minuteMatch != null || secondMatch != null) { long daysAsSecs = parseNumber(text, dayMatch, SECONDS_PER_DAY, "days"); long hoursAsSecs = parseNumber(text, hourMatch, SECONDS_PER_HOUR, "hours"); long minsAsSecs = parseNumber(text, minuteMatch, SECONDS_PER_MINUTE, "minutes"); long seconds = parseNumber(text, secondMatch, 1, "seconds"); boolean negativeSecs = secondMatch != null && secondMatch.charAt(0) == '-'; int nanos = parseFraction(text, fractionMatch, negativeSecs ? -1 : 1); try { return create(negate, daysAsSecs, hoursAsSecs, minsAsSecs, seconds, nanos); } catch (ArithmeticException ex) { throw (DateTimeParseException) new DateTimeParseException("Text cannot be parsed to a Duration: overflow", text, 0).initCause(ex); } } } } throw new DateTimeParseException("Text cannot be parsed to a Duration", text, 0); } private static long parseNumber(CharSequence text, String parsed, int multiplier, String errorText) { // regex limits to [-+]?[0-9]+ if (parsed == null) { return 0; } try { if (parsed.startsWith("+")) { parsed = parsed.substring(1); } long val = Long.parseLong(parsed); return Jdk8Methods.safeMultiply(val, multiplier); } catch (NumberFormatException ex) { throw (DateTimeParseException) new DateTimeParseException("Text cannot be parsed to a Duration: " + errorText, text, 0).initCause(ex); } catch (ArithmeticException ex) { throw (DateTimeParseException) new DateTimeParseException("Text cannot be parsed to a Duration: " + errorText, text, 0).initCause(ex); } } private static int parseFraction(CharSequence text, String parsed, int negate) { // regex limits to [0-9]{0,9} if (parsed == null || parsed.length() == 0) { return 0; } try { parsed = (parsed + "000000000").substring(0, 9); return Integer.parseInt(parsed) * negate; } catch (NumberFormatException ex) { throw (DateTimeParseException) new DateTimeParseException("Text cannot be parsed to a Duration: fraction", text, 0).initCause(ex); } catch (ArithmeticException ex) { throw (DateTimeParseException) new DateTimeParseException("Text cannot be parsed to a Duration: fraction", text, 0).initCause(ex); } } private static Duration create(boolean negate, long daysAsSecs, long hoursAsSecs, long minsAsSecs, long secs, int nanos) { long seconds = Jdk8Methods.safeAdd(daysAsSecs, Jdk8Methods.safeAdd(hoursAsSecs, Jdk8Methods.safeAdd(minsAsSecs, secs))); if (negate) { return ofSeconds(seconds, nanos).negated(); } return ofSeconds(seconds, nanos); } //----------------------------------------------------------------------- /** * Obtains an instance of {@code Duration} using seconds and nanoseconds. * * @param seconds the length of the duration in seconds, positive or negative * @param nanoAdjustment the nanosecond adjustment within the second, from 0 to 999,999,999 */ private static Duration create(long seconds, int nanoAdjustment) { if ((seconds | nanoAdjustment) == 0) { return ZERO; } return new Duration(seconds, nanoAdjustment); } /** * Constructs an instance of {@code Duration} using seconds and nanoseconds. * * @param seconds the length of the duration in seconds, positive or negative * @param nanos the nanoseconds within the second, from 0 to 999,999,999 */ private Duration(long seconds, int nanos) { super(); this.seconds = seconds; this.nanos = nanos; } //----------------------------------------------------------------------- @Override public List getUnits() { return Collections.unmodifiableList(Arrays.asList(SECONDS, NANOS)); } @Override public long get(TemporalUnit unit) { if (unit == SECONDS) { return seconds; } if (unit == NANOS) { return nanos; } throw new UnsupportedTemporalTypeException("Unsupported unit: " + unit); } //----------------------------------------------------------------------- /** * Checks if this duration is zero length. *

* A {@code Duration} represents a directed distance between two points on * the time-line and can therefore be positive, zero or negative. * This method checks whether the length is zero. * * @return true if this duration has a total length equal to zero */ public boolean isZero() { return (seconds | nanos) == 0; } /** * Checks if this duration is negative, excluding zero. *

* A {@code Duration} represents a directed distance between two points on * the time-line and can therefore be positive, zero or negative. * This method checks whether the length is less than zero. * * @return true if this duration has a total length less than zero */ public boolean isNegative() { return seconds < 0; } //----------------------------------------------------------------------- /** * Gets the number of seconds in this duration. *

* The length of the duration is stored using two fields - seconds and nanoseconds. * The nanoseconds part is a value from 0 to 999,999,999 that is an adjustment to * the length in seconds. * The total duration is defined by calling this method and {@link #getNano()}. *

* A {@code Duration} represents a directed distance between two points on the time-line. * A negative duration is expressed by the negative sign of the seconds part. * A duration of -1 nanosecond is stored as -1 seconds plus 999,999,999 nanoseconds. * * @return the whole seconds part of the length of the duration, positive or negative */ public long getSeconds() { return seconds; } /** * Gets the number of nanoseconds within the second in this duration. *

* The length of the duration is stored using two fields - seconds and nanoseconds. * The nanoseconds part is a value from 0 to 999,999,999 that is an adjustment to * the length in seconds. * The total duration is defined by calling this method and {@link #getSeconds()}. *

* A {@code Duration} represents a directed distance between two points on the time-line. * A negative duration is expressed by the negative sign of the seconds part. * A duration of -1 nanosecond is stored as -1 seconds plus 999,999,999 nanoseconds. * * @return the nanoseconds within the second part of the length of the duration, from 0 to 999,999,999 */ public int getNano() { return nanos; } //----------------------------------------------------------------------- /** * Returns a copy of this duration with the specified amount of seconds. *

* This returns a duration with the specified seconds, retaining the * nano-of-second part of this duration. *

* This instance is immutable and unaffected by this method call. * * @param seconds the seconds to represent, may be negative * @return a {@code Duration} based on this period with the requested seconds, not null */ public Duration withSeconds(long seconds) { return create(seconds, nanos); } /** * Returns a copy of this duration with the specified nano-of-second. *

* This returns a duration with the specified nano-of-second, retaining the * seconds part of this duration. *

* This instance is immutable and unaffected by this method call. * * @param nanoOfSecond the nano-of-second to represent, from 0 to 999,999,999 * @return a {@code Duration} based on this period with the requested nano-of-second, not null * @throws DateTimeException if the nano-of-second is invalid */ public Duration withNanos(int nanoOfSecond) { NANO_OF_SECOND.checkValidIntValue(nanoOfSecond); return create(seconds, nanoOfSecond); } //----------------------------------------------------------------------- /** * Returns a copy of this duration with the specified duration added. *

* This instance is immutable and unaffected by this method call. * * @param duration the duration to add, positive or negative, not null * @return a {@code Duration} based on this duration with the specified duration added, not null * @throws ArithmeticException if numeric overflow occurs */ public Duration plus(Duration duration) { return plus(duration.getSeconds(), duration.getNano()); } /** * Returns a copy of this duration with the specified duration added. *

* The duration amount is measured in terms of the specified unit. * Only a subset of units are accepted by this method. * The unit must either have an {@link TemporalUnit#isDurationEstimated() exact duration} or * be {@link ChronoUnit#DAYS} which is treated as 24 hours. Other units throw an exception. *

* This instance is immutable and unaffected by this method call. * * @param amountToAdd the amount of the period, measured in terms of the unit, positive or negative * @param unit the unit that the period is measured in, must have an exact duration, not null * @return a {@code Duration} based on this duration with the specified duration added, not null * @throws ArithmeticException if numeric overflow occurs */ public Duration plus(long amountToAdd, TemporalUnit unit) { Jdk8Methods.requireNonNull(unit, "unit"); if (unit == DAYS) { return plus(Jdk8Methods.safeMultiply(amountToAdd, SECONDS_PER_DAY), 0); } if (unit.isDurationEstimated()) { throw new DateTimeException("Unit must not have an estimated duration"); } if (amountToAdd == 0) { return this; } if (unit instanceof ChronoUnit) { switch ((ChronoUnit) unit) { case NANOS: return plusNanos(amountToAdd); case MICROS: return plusSeconds((amountToAdd / (1000000L * 1000)) * 1000).plusNanos((amountToAdd % (1000000L * 1000)) * 1000); case MILLIS: return plusMillis(amountToAdd); case SECONDS: return plusSeconds(amountToAdd); } return plusSeconds(Jdk8Methods.safeMultiply(unit.getDuration().seconds, amountToAdd)); } Duration duration = unit.getDuration().multipliedBy(amountToAdd); return plusSeconds(duration.getSeconds()).plusNanos(duration.getNano()); } //----------------------------------------------------------------------- /** * Returns a copy of this duration with the specified duration in 24 hour days added. *

* This instance is immutable and unaffected by this method call. * * @param daysToAdd the days to add, positive or negative * @return a {@code Duration} based on this duration with the specified days added, not null * @throws ArithmeticException if numeric overflow occurs */ public Duration plusDays(long daysToAdd) { return plus(Jdk8Methods.safeMultiply(daysToAdd, SECONDS_PER_DAY), 0); } /** * Returns a copy of this duration with the specified duration in hours added. *

* This instance is immutable and unaffected by this method call. * * @param hoursToAdd the hours to add, positive or negative * @return a {@code Duration} based on this duration with the specified hours added, not null * @throws ArithmeticException if numeric overflow occurs */ public Duration plusHours(long hoursToAdd) { return plus(Jdk8Methods.safeMultiply(hoursToAdd, SECONDS_PER_HOUR), 0); } /** * Returns a copy of this duration with the specified duration in minutes added. *

* This instance is immutable and unaffected by this method call. * * @param minutesToAdd the minutes to add, positive or negative * @return a {@code Duration} based on this duration with the specified minutes added, not null * @throws ArithmeticException if numeric overflow occurs */ public Duration plusMinutes(long minutesToAdd) { return plus(Jdk8Methods.safeMultiply(minutesToAdd, SECONDS_PER_MINUTE), 0); } /** * Returns a copy of this duration with the specified duration in seconds added. *

* This instance is immutable and unaffected by this method call. * * @param secondsToAdd the seconds to add, positive or negative * @return a {@code Duration} based on this duration with the specified seconds added, not null * @throws ArithmeticException if numeric overflow occurs */ public Duration plusSeconds(long secondsToAdd) { return plus(secondsToAdd, 0); } /** * Returns a copy of this duration with the specified duration in milliseconds added. *

* This instance is immutable and unaffected by this method call. * * @param millisToAdd the milliseconds to add, positive or negative * @return a {@code Duration} based on this duration with the specified milliseconds added, not null * @throws ArithmeticException if numeric overflow occurs */ public Duration plusMillis(long millisToAdd) { return plus(millisToAdd / 1000, (millisToAdd % 1000) * NANOS_PER_MILLI); } /** * Returns a copy of this duration with the specified duration in nanoseconds added. *

* This instance is immutable and unaffected by this method call. * * @param nanosToAdd the nanoseconds to add, positive or negative * @return a {@code Duration} based on this duration with the specified nanoseconds added, not null * @throws ArithmeticException if numeric overflow occurs */ public Duration plusNanos(long nanosToAdd) { return plus(0, nanosToAdd); } /** * Returns a copy of this duration with the specified duration added. *

* This instance is immutable and unaffected by this method call. * * @param secondsToAdd the seconds to add, positive or negative * @param nanosToAdd the nanos to add, positive or negative * @return a {@code Duration} based on this duration with the specified seconds added, not null * @throws ArithmeticException if numeric overflow occurs */ private Duration plus(long secondsToAdd, long nanosToAdd) { if ((secondsToAdd | nanosToAdd) == 0) { return this; } long epochSec = Jdk8Methods.safeAdd(seconds, secondsToAdd); epochSec = Jdk8Methods.safeAdd(epochSec, nanosToAdd / NANOS_PER_SECOND); nanosToAdd = nanosToAdd % NANOS_PER_SECOND; long nanoAdjustment = nanos + nanosToAdd; // safe int+NANOS_PER_SECOND return ofSeconds(epochSec, nanoAdjustment); } //----------------------------------------------------------------------- /** * Returns a copy of this duration with the specified duration subtracted. *

* This instance is immutable and unaffected by this method call. * * @param duration the duration to subtract, positive or negative, not null * @return a {@code Duration} based on this duration with the specified duration subtracted, not null * @throws ArithmeticException if numeric overflow occurs */ public Duration minus(Duration duration) { long secsToSubtract = duration.getSeconds(); int nanosToSubtract = duration.getNano(); if (secsToSubtract == Long.MIN_VALUE) { return plus(Long.MAX_VALUE, -nanosToSubtract).plus(1, 0); } return plus(-secsToSubtract, -nanosToSubtract); } /** * Returns a copy of this duration with the specified duration subtracted. *

* The duration amount is measured in terms of the specified unit. * Only a subset of units are accepted by this method. * The unit must either have an {@link TemporalUnit#isDurationEstimated() exact duration} or * be {@link ChronoUnit#DAYS} which is treated as 24 hours. Other units throw an exception. *

* This instance is immutable and unaffected by this method call. * * @param amountToSubtract the amount of the period, measured in terms of the unit, positive or negative * @param unit the unit that the period is measured in, must have an exact duration, not null * @return a {@code Duration} based on this duration with the specified duration subtracted, not null * @throws ArithmeticException if numeric overflow occurs */ public Duration minus(long amountToSubtract, TemporalUnit unit) { return (amountToSubtract == Long.MIN_VALUE ? plus(Long.MAX_VALUE, unit).plus(1, unit) : plus(-amountToSubtract, unit)); } //----------------------------------------------------------------------- /** * Returns a copy of this duration with the specified duration in 24 hour days subtracted. *

* This instance is immutable and unaffected by this method call. * * @param daysToSubtract the days to subtract, positive or negative * @return a {@code Duration} based on this duration with the specified days subtracted, not null * @throws ArithmeticException if numeric overflow occurs */ public Duration minusDays(long daysToSubtract) { return (daysToSubtract == Long.MIN_VALUE ? plusDays(Long.MAX_VALUE).plusDays(1) : plusDays(-daysToSubtract)); } /** * Returns a copy of this duration with the specified duration in hours subtracted. *

* This instance is immutable and unaffected by this method call. * * @param hoursToSubtract the hours to subtract, positive or negative * @return a {@code Duration} based on this duration with the specified hours subtracted, not null * @throws ArithmeticException if numeric overflow occurs */ public Duration minusHours(long hoursToSubtract) { return (hoursToSubtract == Long.MIN_VALUE ? plusHours(Long.MAX_VALUE).plusHours(1) : plusHours(-hoursToSubtract)); } /** * Returns a copy of this duration with the specified duration in minutes subtracted. *

* This instance is immutable and unaffected by this method call. * * @param minutesToSubtract the minutes to subtract, positive or negative * @return a {@code Duration} based on this duration with the specified minutes subtracted, not null * @throws ArithmeticException if numeric overflow occurs */ public Duration minusMinutes(long minutesToSubtract) { return (minutesToSubtract == Long.MIN_VALUE ? plusMinutes(Long.MAX_VALUE).plusMinutes(1) : plusMinutes(-minutesToSubtract)); } /** * Returns a copy of this duration with the specified duration in seconds subtracted. *

* This instance is immutable and unaffected by this method call. * * @param secondsToSubtract the seconds to subtract, positive or negative * @return a {@code Duration} based on this duration with the specified seconds subtracted, not null * @throws ArithmeticException if numeric overflow occurs */ public Duration minusSeconds(long secondsToSubtract) { return (secondsToSubtract == Long.MIN_VALUE ? plusSeconds(Long.MAX_VALUE).plusSeconds(1) : plusSeconds(-secondsToSubtract)); } /** * Returns a copy of this duration with the specified duration in milliseconds subtracted. *

* This instance is immutable and unaffected by this method call. * * @param millisToSubtract the milliseconds to subtract, positive or negative * @return a {@code Duration} based on this duration with the specified milliseconds subtracted, not null * @throws ArithmeticException if numeric overflow occurs */ public Duration minusMillis(long millisToSubtract) { return (millisToSubtract == Long.MIN_VALUE ? plusMillis(Long.MAX_VALUE).plusMillis(1) : plusMillis(-millisToSubtract)); } /** * Returns a copy of this duration with the specified duration in nanoseconds subtracted. *

* This instance is immutable and unaffected by this method call. * * @param nanosToSubtract the nanoseconds to subtract, positive or negative * @return a {@code Duration} based on this duration with the specified nanoseconds subtracted, not null * @throws ArithmeticException if numeric overflow occurs */ public Duration minusNanos(long nanosToSubtract) { return (nanosToSubtract == Long.MIN_VALUE ? plusNanos(Long.MAX_VALUE).plusNanos(1) : plusNanos(-nanosToSubtract)); } //----------------------------------------------------------------------- /** * Returns a copy of this duration multiplied by the scalar. *

* This instance is immutable and unaffected by this method call. * * @param multiplicand the value to multiply the duration by, positive or negative * @return a {@code Duration} based on this duration multiplied by the specified scalar, not null * @throws ArithmeticException if numeric overflow occurs */ public Duration multipliedBy(long multiplicand) { if (multiplicand == 0) { return ZERO; } if (multiplicand == 1) { return this; } return create(toSeconds().multiply(BigDecimal.valueOf(multiplicand))); } /** * Returns a copy of this duration divided by the specified value. *

* This instance is immutable and unaffected by this method call. * * @param divisor the value to divide the duration by, positive or negative, not zero * @return a {@code Duration} based on this duration divided by the specified divisor, not null * @throws ArithmeticException if the divisor is zero * @throws ArithmeticException if numeric overflow occurs */ public Duration dividedBy(long divisor) { if (divisor == 0) { throw new ArithmeticException("Cannot divide by zero"); } if (divisor == 1) { return this; } return create(toSeconds().divide(BigDecimal.valueOf(divisor), RoundingMode.DOWN)); } /** * Converts this duration to the total length in seconds and * fractional nanoseconds expressed as a {@code BigDecimal}. * * @return the total length of the duration in seconds, with a scale of 9, not null */ private BigDecimal toSeconds() { return BigDecimal.valueOf(seconds).add(BigDecimal.valueOf(nanos, 9)); } /** * Creates an instance of {@code Duration} from a number of seconds. * * @param seconds the number of seconds, up to scale 9, positive or negative * @return a {@code Duration}, not null * @throws ArithmeticException if numeric overflow occurs */ private static Duration create(BigDecimal seconds) { BigInteger nanos = seconds.movePointRight(9).toBigIntegerExact(); BigInteger[] divRem = nanos.divideAndRemainder(BI_NANOS_PER_SECOND); if (divRem[0].bitLength() > 63) { throw new ArithmeticException("Exceeds capacity of Duration: " + nanos); } return ofSeconds(divRem[0].longValue(), divRem[1].intValue()); } //----------------------------------------------------------------------- /** * Returns a copy of this duration with the length negated. *

* This method swaps the sign of the total length of this duration. * For example, {@code PT1.3S} will be returned as {@code PT-1.3S}. *

* This instance is immutable and unaffected by this method call. * * @return a {@code Duration} based on this duration with the amount negated, not null * @throws ArithmeticException if numeric overflow occurs */ public Duration negated() { return multipliedBy(-1); } /** * Returns a copy of this duration with a positive length. *

* This method returns a positive duration by effectively removing the sign from any negative total length. * For example, {@code PT-1.3S} will be returned as {@code PT1.3S}. *

* This instance is immutable and unaffected by this method call. * * @return a {@code Duration} based on this duration with an absolute length, not null * @throws ArithmeticException if numeric overflow occurs */ public Duration abs() { return isNegative() ? negated() : this; } //------------------------------------------------------------------------- /** * Adds this duration to the specified temporal object. *

* This returns a temporal object of the same observable type as the input * with this duration added. *

* In most cases, it is clearer to reverse the calling pattern by using * {@link Temporal#plus(TemporalAmount)}. *

     *   // these two lines are equivalent, but the second approach is recommended
     *   dateTime = thisDuration.addTo(dateTime);
     *   dateTime = dateTime.plus(thisDuration);
     * 
*

* The calculation will add the seconds, then nanos. * Only non-zero amounts will be added. *

* This instance is immutable and unaffected by this method call. * * @param temporal the temporal object to adjust, not null * @return an object of the same type with the adjustment made, not null * @throws DateTimeException if unable to add * @throws ArithmeticException if numeric overflow occurs */ @Override public Temporal addTo(Temporal temporal) { if (seconds != 0) { temporal = temporal.plus(seconds, SECONDS); } if (nanos != 0) { temporal = temporal.plus(nanos, NANOS); } return temporal; } /** * Subtracts this duration from the specified temporal object. *

* This returns a temporal object of the same observable type as the input * with this duration subtracted. *

* In most cases, it is clearer to reverse the calling pattern by using * {@link Temporal#minus(TemporalAmount)}. *

     *   // these two lines are equivalent, but the second approach is recommended
     *   dateTime = thisDuration.subtractFrom(dateTime);
     *   dateTime = dateTime.minus(thisDuration);
     * 
*

* The calculation will subtract the seconds, then nanos. * Only non-zero amounts will be added. *

* This instance is immutable and unaffected by this method call. * * @param temporal the temporal object to adjust, not null * @return an object of the same type with the adjustment made, not null * @throws DateTimeException if unable to subtract * @throws ArithmeticException if numeric overflow occurs */ @Override public Temporal subtractFrom(Temporal temporal) { if (seconds != 0) { temporal = temporal.minus(seconds, SECONDS); } if (nanos != 0) { temporal = temporal.minus(nanos, NANOS); } return temporal; } //----------------------------------------------------------------------- /** * Gets the number of days in this duration. *

* This returns the total number of days in the duration by dividing the * number of seconds by 86400. * This is based on the standard definition of a day as 24 hours. *

* This instance is immutable and unaffected by this method call. * * @return the number of days in the duration, may be negative */ public long toDays() { return seconds / SECONDS_PER_DAY; } /** * Gets the number of hours in this duration. *

* This returns the total number of hours in the duration by dividing the * number of seconds by 3600. *

* This instance is immutable and unaffected by this method call. * * @return the number of hours in the duration, may be negative */ public long toHours() { return seconds / SECONDS_PER_HOUR; } /** * Gets the number of minutes in this duration. *

* This returns the total number of minutes in the duration by dividing the * number of seconds by 60. *

* This instance is immutable and unaffected by this method call. * * @return the number of minutes in the duration, may be negative */ public long toMinutes() { return seconds / SECONDS_PER_MINUTE; } /** * Converts this duration to the total length in milliseconds. *

* If this duration is too large to fit in a {@code long} milliseconds, then an * exception is thrown. *

* If this duration has greater than millisecond precision, then the conversion * will drop any excess precision information as though the amount in nanoseconds * was subject to integer division by one million. * * @return the total length of the duration in milliseconds * @throws ArithmeticException if numeric overflow occurs */ public long toMillis() { long result = Jdk8Methods.safeMultiply(seconds, 1000); result = Jdk8Methods.safeAdd(result, nanos / NANOS_PER_MILLI); return result; } /** * Converts this duration to the total length in nanoseconds expressed as a {@code long}. *

* If this duration is too large to fit in a {@code long} nanoseconds, then an * exception is thrown. * * @return the total length of the duration in nanoseconds * @throws ArithmeticException if numeric overflow occurs */ public long toNanos() { long result = Jdk8Methods.safeMultiply(seconds, NANOS_PER_SECOND); result = Jdk8Methods.safeAdd(result, nanos); return result; } //----------------------------------------------------------------------- work in progress /** * Extracts the number of days in this duration. *

* This returns the total number of days in the duration by dividing the number of seconds by 86400. * This is based on the standard definition of a day as 24 hours. *

* This instance is immutable and unaffected by this method call. * * @return the number of days in the duration, may be negative * @since 1.5.0 (only added in Java 9) */ public long toDaysPart() { return seconds / SECONDS_PER_DAY; } /** * Extracts the number of hours part in this duration. *

* This returns the number of remaining hours when dividing {@link Duration#toHours()} by hours in a day. * This is based on the standard definition of a day as 24 hours. *

* This instance is immutable and unaffected by this method call. * * @return the number of hours part in the duration, may be negative * @since 1.5.0 (only added in Java 9) */ public int toHoursPart() { return (int) (toHours() % LocalTime.HOURS_PER_DAY); } /** * Extracts the number of minutes part in this duration. *

* This returns the number of remaining minutes when dividing {@link Duration#toMinutes()} by minutes in an hour. * This is based on the standard definition of an hour as 60 minutes. *

* This instance is immutable and by this method call. * * @return the number of minutes parts in the duration, may be negative * @since 1.5.0 (only added in Java 9) */ public int toMinutesPart() { return (int) (toMinutes() % LocalTime.MINUTES_PER_HOUR); } /** * Extracts the number of seconds part in this duration. *

* This returns the remaining seconds when dividing {@link Duration#toSeconds} by seconds in a minute. * This is based on the standard definition of a minute as 60 seconds. *

* This instance is immutable and unaffected by this method call. * * @return the number of seconds parts in the duration, may be negative * @since 1.5.0 (only added in Java 9) */ public int toSecondsPart() { return (int) (seconds % SECONDS_PER_MINUTE); } /** * Extracts the number of milliseconds part of this duration. *

* This returns the milliseconds part by dividing the number of nanoseconds by 1,000,000. * The length of the duration is stored using two fields - seconds and nanoseconds. * The nanoseconds part is a value from 0 to 999,999,999 that is an adjustment to the length in seconds. * The total duration is defined by calling {@link Duration#getNano()} and {@link Duration#getSeconds()}. *

* This instance is immutable and unaffected by this method call. * * @return the number of milliseconds part of the duration. * @since 1.5.0 (only added in Java 9) */ public int toMillisPart() { return nanos / NANOS_PER_MILLI; } /** * Get the nanoseconds part within seconds of the duration. *

* The length of the duration is stored using two fields - seconds and nanoseconds. * The nanoseconds part is a value from 0 to 999,999,999 that is an adjustment to the length in seconds. * The total duration is defined by calling {@link Duration#getNano()} and {@link Duration#getSeconds()}. *

* This instance is immutable and unaffected by this method call. * * @return the nanoseconds within the second part of the length of the duration, from 0 to 999,999,999 * @since 1.5.0 (only added in Java 9) */ public int toNanosPart() { return nanos; } //----------------------------------------------------------------------- /** * Compares this duration to the specified {@code Duration}. *

* The comparison is based on the total length of the durations. * It is "consistent with equals", as defined by {@link Comparable}. * * @param otherDuration the other duration to compare to, not null * @return the comparator value, negative if less, positive if greater */ @Override public int compareTo(Duration otherDuration) { int cmp = Jdk8Methods.compareLongs(seconds, otherDuration.seconds); if (cmp != 0) { return cmp; } return nanos - otherDuration.nanos; } //----------------------------------------------------------------------- /** * Checks if this duration is equal to the specified {@code Duration}. *

* The comparison is based on the total length of the durations. * * @param otherDuration the other duration, null returns false * @return true if the other duration is equal to this one */ @Override public boolean equals(Object otherDuration) { if (this == otherDuration) { return true; } if (otherDuration instanceof Duration) { Duration other = (Duration) otherDuration; return this.seconds == other.seconds && this.nanos == other.nanos; } return false; } /** * A hash code for this duration. * * @return a suitable hash code */ @Override public int hashCode() { return ((int) (seconds ^ (seconds >>> 32))) + (51 * nanos); } //----------------------------------------------------------------------- /** * A string representation of this duration using ISO-8601 seconds * based representation, such as {@code PT8H6M12.345S}. *

* The format of the returned string will be {@code PTnHnMnS}, where n is * the relevant hours, minutes or seconds part of the duration. * Any fractional seconds are placed after a decimal point i the seconds section. * If a section has a zero value, it is omitted. * The hours, minutes and seconds will all have the same sign. *

* Examples: *

     *    "20.345 seconds"                 -> "PT20.345S
     *    "15 minutes" (15 * 60 seconds)   -> "PT15M"
     *    "10 hours" (10 * 3600 seconds)   -> "PT10H"
     *    "2 days" (2 * 86400 seconds)     -> "PT48H"
     * 
* Note that multiples of 24 hours are not output as days to avoid confusion * with {@code Period}. * * @return an ISO-8601 representation of this duration, not null */ @Override public String toString() { if (this == ZERO) { return "PT0S"; } long hours = seconds / SECONDS_PER_HOUR; int minutes = (int) ((seconds % SECONDS_PER_HOUR) / SECONDS_PER_MINUTE); int secs = (int) (seconds % SECONDS_PER_MINUTE); StringBuilder buf = new StringBuilder(24); buf.append("PT"); if (hours != 0) { buf.append(hours).append('H'); } if (minutes != 0) { buf.append(minutes).append('M'); } if (secs == 0 && nanos == 0 && buf.length() > 2) { return buf.toString(); } if (secs < 0 && nanos > 0) { if (secs == -1) { buf.append("-0"); } else { buf.append(secs + 1); } } else { buf.append(secs); } if (nanos > 0) { int pos = buf.length(); if (secs < 0) { buf.append(2 * NANOS_PER_SECOND - nanos); } else { buf.append(nanos + NANOS_PER_SECOND); } while (buf.charAt(buf.length() - 1) == '0') { buf.setLength(buf.length() - 1); } buf.setCharAt(pos, '.'); } buf.append('S'); return buf.toString(); } //----------------------------------------------------------------------- private Object writeReplace() { return new Ser(Ser.DURATION_TYPE, this); } /** * Defend against malicious streams. * @return never * @throws InvalidObjectException always */ private Object readResolve() throws ObjectStreamException { throw new InvalidObjectException("Deserialization via serialization delegate"); } void writeExternal(DataOutput out) throws IOException { out.writeLong(seconds); out.writeInt(nanos); } static Duration readExternal(DataInput in) throws IOException { long seconds = in.readLong(); int nanos = in.readInt(); return Duration.ofSeconds(seconds, nanos); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy