org.tribuo.math.optimisers.AdaGrad Maven / Gradle / Ivy
/*
* Copyright (c) 2015-2020, Oracle and/or its affiliates. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.tribuo.math.optimisers;
import com.oracle.labs.mlrg.olcut.config.Config;
import com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance;
import com.oracle.labs.mlrg.olcut.provenance.impl.ConfiguredObjectProvenanceImpl;
import org.tribuo.math.Parameters;
import org.tribuo.math.StochasticGradientOptimiser;
import org.tribuo.math.la.Tensor;
import java.util.function.DoubleUnaryOperator;
import java.util.logging.Logger;
/**
* An implementation of the AdaGrad gradient optimiser.
*
* Creates one copy of the parameters to store learning rates.
*
* See:
*
* Duchi, J., Hazan, E., and Singer, Y.
* "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization"
* Journal of Machine Learning Research, 2012, 2121-2159.
*
*/
public class AdaGrad implements StochasticGradientOptimiser {
private static final Logger logger = Logger.getLogger(AdaGrad.class.getName());
@Config(mandatory = true,description="Initial learning rate used to scale the gradients.")
private double initialLearningRate;
@Config(description="Epsilon for numerical stability around zero.")
private double epsilon = 1e-6;
@Config(description="Initial value for the gradient accumulator.")
private double initialValue = 0.0;
private Tensor[] gradsSquared;
public AdaGrad(double initialLearningRate, double epsilon) {
this.initialLearningRate = initialLearningRate;
this.epsilon = epsilon;
}
/**
* Sets epsilon to 1e-6.
* @param initialLearningRate The learning rate.
*/
public AdaGrad(double initialLearningRate) {
this(initialLearningRate,1e-6);
}
/**
* For olcut.
*/
private AdaGrad() { }
@Override
public void initialise(Parameters parameters) {
this.gradsSquared = parameters.getEmptyCopy();
if (initialValue != 0.0) {
for (Tensor t : gradsSquared) {
t.scalarAddInPlace(initialValue);
}
}
}
@Override
public Tensor[] step(Tensor[] updates, double weight) {
//lifting lambdas out of the for loop until JDK-8183316 is fixed.
DoubleUnaryOperator square = (double a) -> weight*weight*a*a;
DoubleUnaryOperator scale = (double a) -> weight * initialLearningRate / (epsilon + Math.sqrt(a));
for (int i = 0; i < updates.length; i++) {
Tensor curGradsSquared = gradsSquared[i];
Tensor curGrad = updates[i];
curGradsSquared.intersectAndAddInPlace(curGrad,square);
curGrad.hadamardProductInPlace(curGradsSquared,scale);
}
return updates;
}
@Override
public String toString() {
return "AdaGrad(initialLearningRate="+initialLearningRate+",epsilon="+epsilon+",initialValue="+initialValue+")";
}
@Override
public void reset() {
gradsSquared = null;
}
@Override
public AdaGrad copy() {
return new AdaGrad(initialLearningRate,epsilon);
}
@Override
public ConfiguredObjectProvenance getProvenance() {
return new ConfiguredObjectProvenanceImpl(this,"StochasticGradientOptimiser");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy