org.tribuo.math.optimisers.Pegasos Maven / Gradle / Ivy
/*
* Copyright (c) 2015-2020, Oracle and/or its affiliates. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.tribuo.math.optimisers;
import com.oracle.labs.mlrg.olcut.config.Config;
import com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance;
import com.oracle.labs.mlrg.olcut.provenance.impl.ConfiguredObjectProvenanceImpl;
import org.tribuo.math.Parameters;
import org.tribuo.math.StochasticGradientOptimiser;
import org.tribuo.math.la.DenseMatrix;
import org.tribuo.math.la.DenseVector;
import org.tribuo.math.la.Tensor;
import org.tribuo.math.optimisers.util.ShrinkingMatrix;
import org.tribuo.math.optimisers.util.ShrinkingTensor;
import org.tribuo.math.optimisers.util.ShrinkingVector;
/**
* An implementation of the Pegasos gradient optimiser used primarily for solving the SVM problem.
*
* This gradient optimiser rewrites all the {@link Tensor}s in the {@link Parameters}
* with {@link ShrinkingTensor}. This means it keeps a different value in the {@link Tensor}
* to the one produced when you call get(), so it can correctly apply regularisation to the parameters.
* When {@link Pegasos#finalise()} is called it rewrites the {@link Parameters} with standard dense {@link Tensor}s.
* Follows the implementation in Factorie.
*
* Pegasos is remarkably touchy about it's learning rates. The defaults work on a couple of examples, but it
* requires tuning to work properly on a specific dataset.
*
* See:
*
* Shalev-Shwartz S, Singer Y, Srebro N, Cotter A
* "Pegasos: Primal Estimated Sub-Gradient Solver for SVM"
* Mathematical Programming, 2011.
*
*/
public class Pegasos implements StochasticGradientOptimiser {
@Config(description="Step size shrinkage.")
private double lambda = 1e-2;
@Config(description="Base learning rate.")
private double baseRate = 0.1;
private int iteration = 1;
private Parameters parameters;
/**
* Added for olcut configuration.
*/
private Pegasos() { }
public Pegasos(double baseRate, double lambda) {
this.baseRate = baseRate;
this.lambda = lambda;
}
@Override
public void initialise(Parameters parameters) {
this.parameters = parameters;
Tensor[] curParams = parameters.get();
Tensor[] newParams = new Tensor[curParams.length];
for (int i = 0; i < newParams.length; i++) {
if (curParams[i] instanceof DenseVector) {
newParams[i] = new ShrinkingVector(((DenseVector) curParams[i]), baseRate, lambda);
} else if (curParams[i] instanceof DenseMatrix) {
newParams[i] = new ShrinkingMatrix(((DenseMatrix) curParams[i]), baseRate, lambda);
} else {
throw new IllegalStateException("Unknown Tensor subclass");
}
}
parameters.set(newParams);
}
@Override
public Tensor[] step(Tensor[] updates, double weight) {
double eta_t = baseRate / (lambda * iteration);
for (Tensor t : updates) {
t.scaleInPlace(eta_t * weight);
}
iteration++;
return updates;
}
@Override
public String toString() {
return "Pegasos(baseRate=" + baseRate + ",lambda=" + lambda + ")";
}
@Override
public void finalise() {
Tensor[] curParams = parameters.get();
Tensor[] newParams = new Tensor[curParams.length];
for (int i = 0; i < newParams.length; i++) {
if (curParams[i] instanceof ShrinkingTensor) {
newParams[i] = ((ShrinkingTensor) curParams[i]).convertToDense();
} else {
throw new IllegalStateException("Finalising a Parameters which wasn't initialised with Pegasos");
}
}
parameters.set(newParams);
}
@Override
public void reset() {
iteration = 1;
}
@Override
public Pegasos copy() {
return new Pegasos(lambda,baseRate);
}
@Override
public ConfiguredObjectProvenance getProvenance() {
return new ConfiguredObjectProvenanceImpl(this,"StochasticGradientOptimiser");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy