All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.tribuo.math.optimisers.RMSProp Maven / Gradle / Ivy

There is a newer version: 4.3.1
Show newest version
/*
 * Copyright (c) 2015-2020, Oracle and/or its affiliates. All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.tribuo.math.optimisers;

import com.oracle.labs.mlrg.olcut.config.Config;
import com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance;
import com.oracle.labs.mlrg.olcut.provenance.impl.ConfiguredObjectProvenanceImpl;
import org.tribuo.math.Parameters;
import org.tribuo.math.StochasticGradientOptimiser;
import org.tribuo.math.la.DenseMatrix;
import org.tribuo.math.la.DenseVector;
import org.tribuo.math.la.Tensor;
import org.tribuo.math.optimisers.util.ShrinkingMatrix;
import org.tribuo.math.optimisers.util.ShrinkingVector;

import java.util.function.DoubleUnaryOperator;
import java.util.logging.Logger;

/**
 * An implementation of the RMSProp gradient optimiser.
 * 

* Creates one copy of the parameters to store learning rates. * Follows the Keras implementation. *

* See: *

 * Tieleman, T. and Hinton, G.
 * Lecture 6.5 - RMSProp, COURSERA: Neural Networks for Machine Learning.
 * Technical report, 2012.
 * 
*/ public class RMSProp implements StochasticGradientOptimiser { private static final Logger logger = Logger.getLogger(RMSProp.class.getName()); @Config(mandatory = true,description="Learning rate to scale the gradients by.") private double initialLearningRate; @Config(description="Momentum parameter.") private double rho = 0.9; @Config(description="Epsilon for numerical stability.") private double epsilon = 1e-8; @Config(description="Decay factor for the momentum.") private double decay = 0.0; private double invRho; private int iteration = 0; private Tensor[] gradsSquared; private DoubleUnaryOperator square; public RMSProp(double initialLearningRate, double rho, double epsilon, double decay) { this.initialLearningRate = initialLearningRate; this.rho = rho; this.epsilon = epsilon; this.decay = decay; this.iteration = 0; postConfig(); } public RMSProp(double initialLearningRate, double rho) { this(initialLearningRate,rho,1e-8,0.0); } /** * For olcut. */ private RMSProp() { } @Override public void postConfig() { this.invRho = 1.0 - rho; this.square = (double a) -> invRho*a*a; } @Override public void initialise(Parameters parameters) { gradsSquared = parameters.getEmptyCopy(); for (int i = 0; i < gradsSquared.length; i++) { if (gradsSquared[i] instanceof DenseVector) { gradsSquared[i] = new ShrinkingVector(((DenseVector) gradsSquared[i]), invRho, false); } else if (gradsSquared[i] instanceof DenseMatrix) { gradsSquared[i] = new ShrinkingMatrix(((DenseMatrix) gradsSquared[i]), invRho, false); } else { throw new IllegalStateException("Unknown Tensor subclass"); } } } @Override public Tensor[] step(Tensor[] updates, double weight) { double learningRate = initialLearningRate / (1 + decay * iteration); //lifting lambdas out of the for loop until JDK-8183316 is fixed. DoubleUnaryOperator scale = (double a) -> weight * learningRate / (epsilon + Math.sqrt(a)); for (int i = 0; i < updates.length; i++) { Tensor curGradsSquared = gradsSquared[i]; Tensor curGrad = updates[i]; curGradsSquared.intersectAndAddInPlace(curGrad,square); curGrad.hadamardProductInPlace(curGradsSquared,scale); } iteration++; return updates; } @Override public String toString() { return "RMSProp(initialLearningRate="+initialLearningRate+",rho="+rho+",epsilon="+epsilon+",decay="+decay+")"; } @Override public void reset() { gradsSquared = null; iteration = 0; } @Override public RMSProp copy() { return new RMSProp(initialLearningRate,rho,epsilon,decay); } @Override public ConfiguredObjectProvenance getProvenance() { return new ConfiguredObjectProvenanceImpl(this,"StochasticGradientOptimiser"); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy