org.tribuo.math.optimisers.RMSProp Maven / Gradle / Ivy
/*
* Copyright (c) 2015-2020, Oracle and/or its affiliates. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.tribuo.math.optimisers;
import com.oracle.labs.mlrg.olcut.config.Config;
import com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance;
import com.oracle.labs.mlrg.olcut.provenance.impl.ConfiguredObjectProvenanceImpl;
import org.tribuo.math.Parameters;
import org.tribuo.math.StochasticGradientOptimiser;
import org.tribuo.math.la.DenseMatrix;
import org.tribuo.math.la.DenseVector;
import org.tribuo.math.la.Tensor;
import org.tribuo.math.optimisers.util.ShrinkingMatrix;
import org.tribuo.math.optimisers.util.ShrinkingVector;
import java.util.function.DoubleUnaryOperator;
import java.util.logging.Logger;
/**
* An implementation of the RMSProp gradient optimiser.
*
* Creates one copy of the parameters to store learning rates.
* Follows the Keras implementation.
*
* See:
*
* Tieleman, T. and Hinton, G.
* Lecture 6.5 - RMSProp, COURSERA: Neural Networks for Machine Learning.
* Technical report, 2012.
*
*/
public class RMSProp implements StochasticGradientOptimiser {
private static final Logger logger = Logger.getLogger(RMSProp.class.getName());
@Config(mandatory = true,description="Learning rate to scale the gradients by.")
private double initialLearningRate;
@Config(description="Momentum parameter.")
private double rho = 0.9;
@Config(description="Epsilon for numerical stability.")
private double epsilon = 1e-8;
@Config(description="Decay factor for the momentum.")
private double decay = 0.0;
private double invRho;
private int iteration = 0;
private Tensor[] gradsSquared;
private DoubleUnaryOperator square;
public RMSProp(double initialLearningRate, double rho, double epsilon, double decay) {
this.initialLearningRate = initialLearningRate;
this.rho = rho;
this.epsilon = epsilon;
this.decay = decay;
this.iteration = 0;
postConfig();
}
public RMSProp(double initialLearningRate, double rho) {
this(initialLearningRate,rho,1e-8,0.0);
}
/**
* For olcut.
*/
private RMSProp() { }
@Override
public void postConfig() {
this.invRho = 1.0 - rho;
this.square = (double a) -> invRho*a*a;
}
@Override
public void initialise(Parameters parameters) {
gradsSquared = parameters.getEmptyCopy();
for (int i = 0; i < gradsSquared.length; i++) {
if (gradsSquared[i] instanceof DenseVector) {
gradsSquared[i] = new ShrinkingVector(((DenseVector) gradsSquared[i]), invRho, false);
} else if (gradsSquared[i] instanceof DenseMatrix) {
gradsSquared[i] = new ShrinkingMatrix(((DenseMatrix) gradsSquared[i]), invRho, false);
} else {
throw new IllegalStateException("Unknown Tensor subclass");
}
}
}
@Override
public Tensor[] step(Tensor[] updates, double weight) {
double learningRate = initialLearningRate / (1 + decay * iteration);
//lifting lambdas out of the for loop until JDK-8183316 is fixed.
DoubleUnaryOperator scale = (double a) -> weight * learningRate / (epsilon + Math.sqrt(a));
for (int i = 0; i < updates.length; i++) {
Tensor curGradsSquared = gradsSquared[i];
Tensor curGrad = updates[i];
curGradsSquared.intersectAndAddInPlace(curGrad,square);
curGrad.hadamardProductInPlace(curGradsSquared,scale);
}
iteration++;
return updates;
}
@Override
public String toString() {
return "RMSProp(initialLearningRate="+initialLearningRate+",rho="+rho+",epsilon="+epsilon+",decay="+decay+")";
}
@Override
public void reset() {
gradsSquared = null;
iteration = 0;
}
@Override
public RMSProp copy() {
return new RMSProp(initialLearningRate,rho,epsilon,decay);
}
@Override
public ConfiguredObjectProvenance getProvenance() {
return new ConfiguredObjectProvenanceImpl(this,"StochasticGradientOptimiser");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy