org.trypticon.hex.interpreters.primitives.floating.Float16 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of hex-interpreter Show documentation
Show all versions of hex-interpreter Show documentation
API for interpreting runs of binary as values humans can understand
The newest version!
/*
* Hex - a hex viewer and annotator
* Copyright (C) 2009-2014,2016-2017 Trejkaz, Hex Project
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*/
package org.trypticon.hex.interpreters.primitives.floating;
import org.trypticon.hex.interpreters.primitives.AbstractNumberValue;
import org.trypticon.hex.interpreters.primitives.IntBitField;
import org.trypticon.hex.util.Format;
import java.text.NumberFormat;
import java.util.Locale;
/**
* IEEE 754 half-precision (16-bit) floating point.
*
* @author trejkaz
*/
public class Float16 extends AbstractNumberValue {
// Breakdown of the format.
private static final IntBitField mantissaField = IntBitField.lowest(10);
private static final IntBitField exponentField = mantissaField.next(5);
private static final IntBitField signField = exponentField.next(1);
private final short encodedValue;
public Float16(short encodedValue) {
this.encodedValue = encodedValue;
}
@Override
public float floatValue() {
// Essentially we are up-casting to float.
int mantissa = mantissaField.evaluate(encodedValue);
int exponent = exponentField.evaluate(encodedValue);
int sign = signField.evaluate(encodedValue);
if (exponent == 0x1f) {
// NaN/Infinity case. It's OK to do this without filling the mantissa. Any non-zero in there means NaN.
exponent = 0xff;
} else if (exponent != 0) {
// Normalised case. Re-bias the exponent and shift the mantissa to the right place.
exponent += (127 - 15);
mantissa <<= (23 - 10);
} else if (mantissa != 0) {
// Sub-normal case. Treat the exponent as one higher than it is.
exponent = (127 - 15) + 1;
mantissa <<= (23 - 10);
// Then shift the bits upwards until the leading bit is 1 again.
do {
mantissa <<= 1;
exponent--;
} while ((mantissa & 0x800000) == 0);
// Then discard the leading bit.
mantissa &= 0x7fffff;
} // else it's the +/- zero case, mantissa and exponent both zero, so nothing to do.
// 1 bit of sign, 8 bits of exponent, 23 bits of mantissa
return java.lang.Float.intBitsToFloat(sign << 31 | exponent << 23 | mantissa);
}
@Override
public int intValue() {
return (int) floatValue();
}
@Override
public long longValue() {
return (long) floatValue();
}
@Override
public double doubleValue() {
return floatValue();
}
@Override
public long length() {
return 2;
}
@Override
public String toLocalisedString(Format style, Locale locale) {
int mantissa = mantissaField.evaluate(encodedValue);
int exponent = exponentField.evaluate(encodedValue);
if (exponent == 0x1f || (exponent == 0 && mantissa == 0)) {
return NumberFormat.getInstance(locale).format(floatValue());
} else {
return String.format(locale, "%.4G", floatValue());
}
}
}