All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.trypticon.luceneupgrader.lucene4.internal.lucene.util.MathUtil Maven / Gradle / Ivy

There is a newer version: 0.5.1
Show newest version
package org.trypticon.luceneupgrader.lucene4.internal.lucene.util;

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import java.math.BigInteger;

/**
 * Math static utility methods.
 */
public final class MathUtil {

  // No instance:
  private MathUtil() {
  }

  /**
   * Returns {@code x <= 0 ? 0 : Math.floor(Math.log(x) / Math.log(base))}
   * @param base must be {@code > 1}
   */
  public static int log(long x, int base) {
    if (base <= 1) {
      throw new IllegalArgumentException("base must be > 1");
    }
    int ret = 0;
    while (x >= base) {
      x /= base;
      ret++;
    }
    return ret;
  }

  /**
   * Calculates logarithm in a given base with doubles.
   */
  public static double log(double base, double x) {
    return Math.log(x) / Math.log(base);
  }

  /** Return the greatest common divisor of a and b,
   *  consistently with {@link BigInteger#gcd(BigInteger)}.
   *  

NOTE: A greatest common divisor must be positive, but * 2^64 cannot be expressed as a long although it * is the GCD of {@link Long#MIN_VALUE} and 0 and the GCD of * {@link Long#MIN_VALUE} and {@link Long#MIN_VALUE}. So in these 2 cases, * and only them, this method will return {@link Long#MIN_VALUE}. */ // see http://en.wikipedia.org/wiki/Binary_GCD_algorithm#Iterative_version_in_C.2B.2B_using_ctz_.28count_trailing_zeros.29 public static long gcd(long a, long b) { a = Math.abs(a); b = Math.abs(b); if (a == 0) { return b; } else if (b == 0) { return a; } final int commonTrailingZeros = Long.numberOfTrailingZeros(a | b); a >>>= Long.numberOfTrailingZeros(a); while (true) { b >>>= Long.numberOfTrailingZeros(b); if (a == b) { break; } else if (a > b || a == Long.MIN_VALUE) { // MIN_VALUE is treated as 2^64 final long tmp = a; a = b; b = tmp; } if (a == 1) { break; } b -= a; } return a << commonTrailingZeros; } /** * Calculates inverse hyperbolic sine of a {@code double} value. *

* Special cases: *

    *
  • If the argument is NaN, then the result is NaN. *
  • If the argument is zero, then the result is a zero with the same sign as the argument. *
  • If the argument is infinite, then the result is infinity with the same sign as the argument. *
*/ public static double asinh(double a) { final double sign; // check the sign bit of the raw representation to handle -0 if (Double.doubleToRawLongBits(a) < 0) { a = Math.abs(a); sign = -1.0d; } else { sign = 1.0d; } return sign * Math.log(Math.sqrt(a * a + 1.0d) + a); } /** * Calculates inverse hyperbolic cosine of a {@code double} value. *

* Special cases: *

    *
  • If the argument is NaN, then the result is NaN. *
  • If the argument is +1, then the result is a zero. *
  • If the argument is positive infinity, then the result is positive infinity. *
  • If the argument is less than 1, then the result is NaN. *
*/ public static double acosh(double a) { return Math.log(Math.sqrt(a * a - 1.0d) + a); } /** * Calculates inverse hyperbolic tangent of a {@code double} value. *

* Special cases: *

    *
  • If the argument is NaN, then the result is NaN. *
  • If the argument is zero, then the result is a zero with the same sign as the argument. *
  • If the argument is +1, then the result is positive infinity. *
  • If the argument is -1, then the result is negative infinity. *
  • If the argument's absolute value is greater than 1, then the result is NaN. *
*/ public static double atanh(double a) { final double mult; // check the sign bit of the raw representation to handle -0 if (Double.doubleToRawLongBits(a) < 0) { a = Math.abs(a); mult = -0.5d; } else { mult = 0.5d; } return mult * Math.log((1.0d + a) / (1.0d - a)); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy