org.ujmp.jama.JamaDenseDoubleMatrix2D Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ujmp-jama Show documentation
Show all versions of ujmp-jama Show documentation
Plugin to incorporate dense matrix classes from JAMA
The newest version!
/*
* Copyright (C) 2008-2015 by Holger Arndt
*
* This file is part of the Universal Java Matrix Package (UJMP).
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* UJMP is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* UJMP is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with UJMP; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package org.ujmp.jama;
import org.ujmp.core.Matrix;
import org.ujmp.core.doublematrix.stub.AbstractDenseDoubleMatrix2D;
import org.ujmp.core.interfaces.Wrapper;
import org.ujmp.core.mapmatrix.MapMatrix;
import Jama.CholeskyDecomposition;
import Jama.EigenvalueDecomposition;
import Jama.LUDecomposition;
import Jama.QRDecomposition;
import Jama.SingularValueDecomposition;
public class JamaDenseDoubleMatrix2D extends AbstractDenseDoubleMatrix2D implements Wrapper {
private static final long serialVersionUID = -6065454603299978242L;
public static final JamaDenseDoubleMatrix2DFactory Factory = new JamaDenseDoubleMatrix2DFactory();
private final Jama.Matrix matrix;
public JamaDenseDoubleMatrix2D(int rows, int columns) {
super(rows, columns);
this.matrix = new Jama.Matrix(rows, columns);
}
public JamaDenseDoubleMatrix2D(Jama.Matrix matrix) {
super(matrix.getRowDimension(), matrix.getColumnDimension());
this.matrix = matrix;
}
public JamaDenseDoubleMatrix2D(Matrix source) {
super(source.getRowCount(), source.getColumnCount());
this.matrix = new Jama.Matrix((int) source.getRowCount(), (int) source.getColumnCount());
for (long[] c : source.availableCoordinates()) {
setDouble(source.getAsDouble(c), c);
}
if (source.getMetaData() != null) {
setMetaData(source.getMetaData().clone());
}
}
public static Jama.Matrix identity(int m, int n) {
Jama.Matrix A = new Jama.Matrix(m, n);
double[][] X = A.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
X[i][j] = (i == j ? 1.0 : 0.0);
}
}
return A;
}
public Matrix inv() {
return new JamaDenseDoubleMatrix2D(matrix.inverse());
}
public Matrix invSPD() {
CholeskyDecomposition chol = new CholeskyDecomposition(matrix);
return new JamaDenseDoubleMatrix2D(chol.solve(Jama.Matrix.identity(matrix.getRowDimension(),
matrix.getRowDimension())));
}
public Matrix[] svd() {
if (getColumnCount() > getRowCount()) {
SingularValueDecomposition svd = new SingularValueDecomposition(matrix.transpose());
Matrix u = new JamaDenseDoubleMatrix2D(svd.getV());
Matrix s = new JamaDenseDoubleMatrix2D(svd.getS().transpose());
Matrix v = new JamaDenseDoubleMatrix2D(svd.getU());
return new Matrix[] { u, s, v };
} else {
SingularValueDecomposition svd = new SingularValueDecomposition(matrix);
Matrix u = new JamaDenseDoubleMatrix2D(svd.getU());
Matrix s = new JamaDenseDoubleMatrix2D(svd.getS());
Matrix v = new JamaDenseDoubleMatrix2D(svd.getV());
return new Matrix[] { u, s, v };
}
}
public double getDouble(long row, long column) {
return matrix.get((int) row, (int) column);
}
public double getDouble(int row, int column) {
return matrix.get(row, column);
}
public void setDouble(double value, long row, long column) {
matrix.set((int) row, (int) column, value);
}
public void setDouble(double value, int row, int column) {
matrix.set(row, column, value);
}
public Jama.Matrix getWrappedObject() {
return matrix;
}
public final Matrix copy() {
Matrix m = new JamaDenseDoubleMatrix2D(matrix.copy());
if (getMetaData() != null) {
m.setMetaData(getMetaData().clone());
}
return m;
}
public Matrix transpose() {
return new JamaDenseDoubleMatrix2D(matrix.transpose());
}
public Matrix[] qr() {
if (getRowCount() >= getColumnCount()) {
QRDecomposition qr = new QRDecomposition(matrix);
Matrix q = new JamaDenseDoubleMatrix2D(qr.getQ());
Matrix r = new JamaDenseDoubleMatrix2D(qr.getR());
return new Matrix[] { q, r };
} else {
throw new RuntimeException("QR decomposition only works for matrices m>=n");
}
}
public Matrix[] lu() {
LUDecomposition lu = new LUDecomposition(matrix);
Matrix l = new JamaDenseDoubleMatrix2D(lu.getL());
Matrix u = new JamaDenseDoubleMatrix2D(lu.getU());
int m = (int) getRowCount();
int[] piv = lu.getPivot();
Matrix p = new JamaDenseDoubleMatrix2D(m, m);
for (int i = 0; i < m; i++) {
p.setAsDouble(1, i, piv[i]);
}
return new Matrix[] { l, u, p };
}
public Matrix[] eig() {
EigenvalueDecomposition eig = new EigenvalueDecomposition(matrix);
Matrix v = new JamaDenseDoubleMatrix2D(eig.getV());
Matrix d = new JamaDenseDoubleMatrix2D(eig.getD());
return new Matrix[] { v, d };
}
public Matrix chol() {
CholeskyDecomposition chol = new CholeskyDecomposition(matrix);
Matrix r = new JamaDenseDoubleMatrix2D(chol.getL());
return r;
}
public Matrix mtimes(Matrix m) {
if (m instanceof JamaDenseDoubleMatrix2D) {
return new JamaDenseDoubleMatrix2D(matrix.times(((JamaDenseDoubleMatrix2D) m).matrix));
} else {
return super.mtimes(m);
}
}
public Matrix times(double value) {
Matrix result = new JamaDenseDoubleMatrix2D(matrix.times(value));
MapMatrix a = getMetaData();
if (a != null) {
result.setMetaData(a.clone());
}
return result;
}
public Matrix divide(double value) {
Matrix result = new JamaDenseDoubleMatrix2D(matrix.times(1.0 / value));
MapMatrix a = getMetaData();
if (a != null) {
result.setMetaData(a.clone());
}
return result;
}
public double det() {
return matrix.det();
}
public Matrix plus(Matrix m) {
if (m instanceof JamaDenseDoubleMatrix2D) {
Matrix result = new JamaDenseDoubleMatrix2D(matrix.plus(((JamaDenseDoubleMatrix2D) m).matrix));
MapMatrix a = getMetaData();
if (a != null) {
result.setMetaData(a.clone());
}
return result;
} else {
return super.plus(m);
}
}
public Matrix minus(Matrix m) {
if (m instanceof JamaDenseDoubleMatrix2D) {
Matrix result = new JamaDenseDoubleMatrix2D(matrix.minus(((JamaDenseDoubleMatrix2D) m).matrix));
MapMatrix a = getMetaData();
if (a != null) {
result.setMetaData(a.clone());
}
return result;
} else {
return super.minus(m);
}
}
public Matrix solve(Matrix b) {
if (b instanceof JamaDenseDoubleMatrix2D) {
JamaDenseDoubleMatrix2D b2 = (JamaDenseDoubleMatrix2D) b;
Jama.Matrix x = matrix.solve(b2.matrix);
return new JamaDenseDoubleMatrix2D(x);
} else {
return super.solve(b);
}
}
public Matrix solveSPD(Matrix b) {
if (b instanceof JamaDenseDoubleMatrix2D) {
JamaDenseDoubleMatrix2D b2 = (JamaDenseDoubleMatrix2D) b;
CholeskyDecomposition chol = new CholeskyDecomposition(matrix);
return new JamaDenseDoubleMatrix2D(chol.solve(b2.matrix));
} else {
return super.solve(b);
}
}
public JamaDenseDoubleMatrix2DFactory getFactory() {
return Factory;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy