org.uma.jmetal.workingTest.PolynomialMutationWorkingTest Maven / Gradle / Ivy
package org.uma.jmetal.workingTest;
import org.uma.jmetal.operator.MutationOperator;
import org.uma.jmetal.operator.impl.mutation.PolynomialMutation;
import org.uma.jmetal.problem.DoubleProblem;
import org.uma.jmetal.problem.singleobjective.Sphere;
import org.uma.jmetal.solution.DoubleSolution;
import java.io.*;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
/**
* @author Antonio J. Nebro
* @version 1.0
*
* This class is intended to verify the working of the polynomial mutation operator. A figure
* depicting the values obtained when generating 100000 points, a granularity of 200, and a number
* of different distribution index values (5, 10, 20) can be found here:
*
Polynomial mutation
*/
public class PolynomialMutationWorkingTest {
/**
* Program to generate data representing the distribution of points generated by a polynomial
* mutation operator. The parameters to be introduced by the command line are:
* - numberOfSolutions: number of solutions to generate
* - granularity: number of subdivisions to be considered.
* - distributionIndex: distribution index of the polynomial mutation operator
* - outputFile: file containing the results
*
* @param args Command line arguments
*/
public static void main(String[] args) throws FileNotFoundException {
if (args.length !=4) {
System.err.println("Usage: numberOfSolutions granularity distributionIndex outputFile") ;
System.exit(-1) ;
}
int numberOfPoints = Integer.valueOf(args[0]) ;
int granularity = Integer.valueOf(args[1]) ;
double distributionIndex = Double.valueOf(args[2]) ;
String outputFileName = args[3] ;
DoubleProblem problem ;
problem = new Sphere(1) ;
MutationOperator mutation = new PolynomialMutation(1.0, distributionIndex) ;
DoubleSolution solution = problem.createSolution() ;
solution.setVariableValue(0, 0.0);
List population = new ArrayList<>(numberOfPoints) ;
for (int i = 0 ; i < numberOfPoints ; i++) {
DoubleSolution newSolution = (DoubleSolution) solution.copy();
mutation.execute(newSolution) ;
population.add(newSolution) ;
}
Collections.sort(population, new VariableComparator()) ;
double[][] classifier = classify(population, problem, granularity);
BufferedWriter bufferedWriter = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(outputFileName)));
try {
for (int i = 0; i < classifier.length; i++) {
bufferedWriter
.write(classifier[i][0] + "\t" + classifier[i][1]);
bufferedWriter.newLine();
}
bufferedWriter.close();
} catch (IOException e) {
e.printStackTrace();
}
}
private static double[][] classify(List solutions, DoubleProblem problem, int granularity) {
double grain = (problem.getUpperBound(0) - problem.getLowerBound(0)) / granularity ;
double[][] classifier = new double[granularity][] ;
for (int i = 0 ; i < granularity; i++) {
classifier[i] = new double[2] ;
classifier[i][0] = problem.getLowerBound(0) + i * grain ;
classifier[i][1] = 0 ;
}
for (DoubleSolution solution : solutions) {
boolean found = false ;
int index = 0 ;
while (!found) {
if (solution.getVariableValue(0) <= classifier[index][0]) {
classifier[index][1] ++ ;
found = true ;
} else {
if (index == (granularity - 1)) {
classifier[index][1] ++ ;
found = true ;
} else {
index++;
}
}
}
}
return classifier ;
}
public static class VariableComparator implements Comparator {
/**
* Compares two solutions according to the first variable value
*
* @param solution1 Object representing the first Solution
.
* @param solution2 Object representing the second Solution
.
* @return -1, or 0, or 1 if o1 is less than, equal, or greater than o2,
* respectively.
*/
@Override
public int compare(DoubleSolution solution1, DoubleSolution solution2) {
if (solution1 == null) {
return 1;
} else if (solution2 == null) {
return -1;
}
if (solution1.getVariableValue(0) < solution2.getVariableValue(0)) {
return -1;
}
if (solution1.getVariableValue(0) > solution2.getVariableValue(0)) {
return 1;
}
return 0;
}
}
}