All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.uma.jmetal.experiment.ConstraintProblemsStudy Maven / Gradle / Ivy

There is a newer version: 5.9
Show newest version
package org.uma.jmetal.experiment;

import org.uma.jmetal.algorithm.Algorithm;
import org.uma.jmetal.algorithm.multiobjective.gde3.GDE3Builder;
import org.uma.jmetal.algorithm.multiobjective.mocell.MOCellBuilder;
import org.uma.jmetal.algorithm.multiobjective.nsgaii.NSGAIIBuilder;
import org.uma.jmetal.algorithm.multiobjective.smpso.SMPSOBuilder;
import org.uma.jmetal.algorithm.multiobjective.spea2.SPEA2Builder;
import org.uma.jmetal.operator.impl.crossover.DifferentialEvolutionCrossover;
import org.uma.jmetal.operator.impl.crossover.SBXCrossover;
import org.uma.jmetal.operator.impl.mutation.PolynomialMutation;
import org.uma.jmetal.operator.impl.selection.BinaryTournamentSelection;
import org.uma.jmetal.operator.impl.selection.DifferentialEvolutionSelection;
import org.uma.jmetal.problem.DoubleProblem;
import org.uma.jmetal.problem.Problem;
import org.uma.jmetal.problem.multiobjective.*;
import org.uma.jmetal.qualityindicator.impl.Epsilon;
import org.uma.jmetal.qualityindicator.impl.InvertedGenerationalDistancePlus;
import org.uma.jmetal.qualityindicator.impl.hypervolume.PISAHypervolume;
import org.uma.jmetal.solution.DoubleSolution;
import org.uma.jmetal.util.JMetalException;
import org.uma.jmetal.util.archive.impl.CrowdingDistanceArchive;
import org.uma.jmetal.util.evaluator.impl.SequentialSolutionListEvaluator;
import org.uma.jmetal.util.experiment.Experiment;
import org.uma.jmetal.util.experiment.ExperimentBuilder;
import org.uma.jmetal.util.experiment.component.*;
import org.uma.jmetal.util.experiment.util.ExperimentAlgorithm;
import org.uma.jmetal.util.experiment.util.ExperimentProblem;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

/**
 * Example of experimental study based on solving the unconstrained problems included in jMetal.
 *
 * This experiment assumes that the reference Pareto front are known and that, given a problem named
 * P, there is a corresponding file called P.pf containing its corresponding Pareto front. If this
 * is not the case, please refer to class {@link DTLZStudy} to see an example of how to explicitly
 * indicate the name of those files.
 *
 * Six quality indicators are used for performance assessment.
 *
 * The steps to carry out the experiment are:
 * 1. Configure the experiment
 * 2. Execute the algorithms
 * 3. Generate the reference Pareto fronts
 * 4. Compute the quality indicators
 * 5. Generate Latex tables reporting means and medians
 * 6. Generate Latex tables with the result of applying the Wilcoxon Rank Sum Test
 * 7. Generate Latex tables with the ranking obtained by applying the Friedman test
 * 8. Generate R scripts to obtain boxplots
 *
 * @author Antonio J. Nebro 
 */
public class ConstraintProblemsStudy {
  private static final int INDEPENDENT_RUNS = 25;

  public static void main(String[] args) throws IOException {
    if (args.length != 1) {
      throw new JMetalException("Needed arguments: experimentBaseDirectory");
    }
    String experimentBaseDirectory = args[0];

    List> problemList = new ArrayList<>();
    problemList.add(new ExperimentProblem<>(new Binh2()));
    problemList.add(new ExperimentProblem<>(new ConstrEx()));
    problemList.add(new ExperimentProblem<>(new Golinski()));
    problemList.add(new ExperimentProblem<>(new Srinivas()));
    problemList.add(new ExperimentProblem<>(new Tanaka()));
    problemList.add(new ExperimentProblem<>(new Water()));

    List>> algorithmList =
            configureAlgorithmList(problemList);

    Experiment> experiment =
            new ExperimentBuilder>("ConstrainedProblemsStudy")
                    .setAlgorithmList(algorithmList)
                    .setProblemList(problemList)
                    .setExperimentBaseDirectory(experimentBaseDirectory)
                    .setOutputParetoFrontFileName("FUN")
                    .setOutputParetoSetFileName("VAR")
                    .setReferenceFrontDirectory(experimentBaseDirectory + "/ConstrainedProblemsStudy/referenceFronts")
                    .setIndicatorList(Arrays.asList(
                            new Epsilon(),
                            new PISAHypervolume(),
                            new InvertedGenerationalDistancePlus()))
                    .setIndependentRuns(INDEPENDENT_RUNS)
                    .setNumberOfCores(8)
                    .build();

    new ExecuteAlgorithms<>(experiment).run();
    new GenerateReferenceParetoSetAndFrontFromDoubleSolutions(experiment).run();
    new ComputeQualityIndicators<>(experiment).run();
    new GenerateLatexTablesWithStatistics(experiment).run();
    new GenerateWilcoxonTestTablesWithR<>(experiment).run();
    new GenerateFriedmanTestTables<>(experiment).run();
    new GenerateBoxplotsWithR<>(experiment).setRows(3).setColumns(3).run();
  }

  /**
   * The algorithm list is composed of pairs {@link Algorithm} + {@link Problem} which form part of
   * a {@link ExperimentAlgorithm}, which is a decorator for class {@link Algorithm}. The {@link
   * ExperimentAlgorithm} has an optional tag component, that can be set as it is shown in this example,
   * where four variants of a same algorithm are defined.
   */
  static List>> configureAlgorithmList(
          List> problemList) {
    List>> algorithms = new ArrayList<>();
    for (int run = 0; run < INDEPENDENT_RUNS; run++) {

      for (int i = 0; i < problemList.size(); i++) {
        Algorithm> algorithm = new NSGAIIBuilder<>(
                problemList.get(i).getProblem(),
                new SBXCrossover(1.0, 20),
                new PolynomialMutation(1.0 / problemList.get(i).getProblem().getNumberOfVariables(), 20.0))
                .setMaxEvaluations(25000)
                .setPopulationSize(100)
                .build();
        algorithms.add(new ExperimentAlgorithm<>(algorithm, problemList.get(i),run));
      }

      for (int i = 0; i < problemList.size(); i++) {
        Algorithm> algorithm = new SPEA2Builder(
                problemList.get(i).getProblem(),
                new SBXCrossover(1.0, 10.0),
                new PolynomialMutation(1.0 / problemList.get(i).getProblem().getNumberOfVariables(), 20.0))
                .build();
        algorithms.add(new ExperimentAlgorithm<>(algorithm, problemList.get(i), run));
      }

      for (int i = 0; i < problemList.size(); i++) {
        double mutationProbability = 1.0 / problemList.get(i).getProblem().getNumberOfVariables();
        double mutationDistributionIndex = 20.0;
        Algorithm> algorithm = new SMPSOBuilder((DoubleProblem) problemList.get(i).getProblem(),
                new CrowdingDistanceArchive(100))
                .setMutation(new PolynomialMutation(mutationProbability, mutationDistributionIndex))
                .setMaxIterations(250)
                .setSwarmSize(100)
                .setSolutionListEvaluator(new SequentialSolutionListEvaluator())
                .build();
        algorithms.add(new ExperimentAlgorithm<>(algorithm, problemList.get(i), run));
      }
      for (int i = 0; i < problemList.size(); i++) {
        double cr = 0.5;
        double f = 0.5;

        Algorithm> algorithm = new GDE3Builder((DoubleProblem) problemList.get(i).getProblem())
                .setCrossover(new DifferentialEvolutionCrossover(cr, f, "rand/1/bin"))
                .setSelection(new DifferentialEvolutionSelection())
                .setMaxEvaluations(25000)
                .setPopulationSize(100)
                .setSolutionSetEvaluator(new SequentialSolutionListEvaluator<>())
                .build();
        algorithms.add(new ExperimentAlgorithm<>(algorithm, problemList.get(i), run));
      }

      for (int i = 0; i < problemList.size(); i++) {
        Algorithm> algorithm = new MOCellBuilder(
                (DoubleProblem) problemList.get(i).getProblem(),
                new SBXCrossover(1.0, 20.0),
                new PolynomialMutation(1.0 / problemList.get(i).getProblem().getNumberOfVariables(), 20.0))
                .setSelectionOperator(new BinaryTournamentSelection<>())
                .setMaxEvaluations(25000)
                .setPopulationSize(100)
                .setArchive(new CrowdingDistanceArchive(100))
                .build();
        algorithms.add(new ExperimentAlgorithm<>(algorithm, problemList.get(i), run));
      }
    }
    return algorithms;
  }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy