org.uma.jmetal.runner.singleobjective.DifferentialEvolutionRunner Maven / Gradle / Ivy
package org.uma.jmetal.runner.singleobjective;
import org.uma.jmetal.algorithm.Algorithm;
import org.uma.jmetal.algorithm.singleobjective.differentialevolution.DifferentialEvolutionBuilder;
import org.uma.jmetal.operator.impl.crossover.DifferentialEvolutionCrossover;
import org.uma.jmetal.operator.impl.selection.DifferentialEvolutionSelection;
import org.uma.jmetal.problem.DoubleProblem;
import org.uma.jmetal.problem.singleobjective.Sphere;
import org.uma.jmetal.solution.DoubleSolution;
import org.uma.jmetal.util.AlgorithmRunner;
import org.uma.jmetal.util.JMetalLogger;
import org.uma.jmetal.util.evaluator.SolutionListEvaluator;
import org.uma.jmetal.util.evaluator.impl.MultithreadedSolutionListEvaluator;
import org.uma.jmetal.util.evaluator.impl.SequentialSolutionListEvaluator;
import org.uma.jmetal.util.fileoutput.SolutionListOutput;
import org.uma.jmetal.util.fileoutput.impl.DefaultFileOutputContext;
import java.util.ArrayList;
import java.util.List;
/**
* Class to configure and run a differential evolution algorithm. The algorithm can be configured
* to use threads. The number of cores is specified as an optional parameter. The target problem is Sphere.
*
* @author Antonio J. Nebro
*/
public class DifferentialEvolutionRunner {
private static final int DEFAULT_NUMBER_OF_CORES = 1 ;
/**
* Usage: java org.uma.jmetal.runner.singleobjective.DifferentialEvolutionRunner [cores]
*/
public static void main(String[] args) throws Exception {
DoubleProblem problem;
Algorithm algorithm;
DifferentialEvolutionSelection selection;
DifferentialEvolutionCrossover crossover;
SolutionListEvaluator evaluator ;
problem = new Sphere(20) ;
int numberOfCores ;
if (args.length == 1) {
numberOfCores = Integer.valueOf(args[0]) ;
} else {
numberOfCores = DEFAULT_NUMBER_OF_CORES ;
}
if (numberOfCores == 1) {
evaluator = new SequentialSolutionListEvaluator() ;
} else {
evaluator = new MultithreadedSolutionListEvaluator(numberOfCores, problem) ;
}
crossover = new DifferentialEvolutionCrossover(0.5, 0.5, "rand/1/bin") ;
selection = new DifferentialEvolutionSelection();
algorithm = new DifferentialEvolutionBuilder(problem)
.setCrossover(crossover)
.setSelection(selection)
.setSolutionListEvaluator(evaluator)
.setMaxEvaluations(25000)
.setPopulationSize(100)
.build() ;
AlgorithmRunner algorithmRunner = new AlgorithmRunner.Executor(algorithm)
.execute() ;
DoubleSolution solution = algorithm.getResult() ;
long computingTime = algorithmRunner.getComputingTime() ;
List population = new ArrayList<>(1) ;
population.add(solution) ;
new SolutionListOutput(population)
.setSeparator("\t")
.setVarFileOutputContext(new DefaultFileOutputContext("VAR.tsv"))
.setFunFileOutputContext(new DefaultFileOutputContext("FUN.tsv"))
.print();
JMetalLogger.logger.info("Total execution time: " + computingTime + "ms");
JMetalLogger.logger.info("Objectives values have been written to file FUN.tsv");
JMetalLogger.logger.info("Variables values have been written to file VAR.tsv");
JMetalLogger.logger.info("Fitness: " + solution.getObjective(0)) ;
evaluator.shutdown();
}
}