com.pulumi.aws.bedrock.kotlin.inputs.AgentKnowledgeBaseStorageConfigurationRdsConfigurationFieldMappingArgs.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pulumi-aws-kotlin Show documentation
Show all versions of pulumi-aws-kotlin Show documentation
Build cloud applications and infrastructure by combining the safety and reliability of infrastructure as code with the power of the Kotlin programming language.
@file:Suppress("NAME_SHADOWING", "DEPRECATION")
package com.pulumi.aws.bedrock.kotlin.inputs
import com.pulumi.aws.bedrock.inputs.AgentKnowledgeBaseStorageConfigurationRdsConfigurationFieldMappingArgs.builder
import com.pulumi.core.Output
import com.pulumi.core.Output.of
import com.pulumi.kotlin.ConvertibleToJava
import com.pulumi.kotlin.PulumiNullFieldException
import com.pulumi.kotlin.PulumiTagMarker
import kotlin.String
import kotlin.Suppress
import kotlin.jvm.JvmName
/**
*
* @property metadataField Name of the field in which Amazon Bedrock stores metadata about the vector store.
* @property primaryKeyField Name of the field in which Amazon Bedrock stores the ID for each entry.
* @property textField Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
* @property vectorField Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
*/
public data class AgentKnowledgeBaseStorageConfigurationRdsConfigurationFieldMappingArgs(
public val metadataField: Output,
public val primaryKeyField: Output,
public val textField: Output,
public val vectorField: Output,
) :
ConvertibleToJava {
override fun toJava(): com.pulumi.aws.bedrock.inputs.AgentKnowledgeBaseStorageConfigurationRdsConfigurationFieldMappingArgs =
com.pulumi.aws.bedrock.inputs.AgentKnowledgeBaseStorageConfigurationRdsConfigurationFieldMappingArgs.builder()
.metadataField(metadataField.applyValue({ args0 -> args0 }))
.primaryKeyField(primaryKeyField.applyValue({ args0 -> args0 }))
.textField(textField.applyValue({ args0 -> args0 }))
.vectorField(vectorField.applyValue({ args0 -> args0 })).build()
}
/**
* Builder for [AgentKnowledgeBaseStorageConfigurationRdsConfigurationFieldMappingArgs].
*/
@PulumiTagMarker
public class AgentKnowledgeBaseStorageConfigurationRdsConfigurationFieldMappingArgsBuilder internal constructor() {
private var metadataField: Output? = null
private var primaryKeyField: Output? = null
private var textField: Output? = null
private var vectorField: Output? = null
/**
* @param value Name of the field in which Amazon Bedrock stores metadata about the vector store.
*/
@JvmName("qlpibodgvnxqsivc")
public suspend fun metadataField(`value`: Output) {
this.metadataField = value
}
/**
* @param value Name of the field in which Amazon Bedrock stores the ID for each entry.
*/
@JvmName("beokacvlynxufwaf")
public suspend fun primaryKeyField(`value`: Output) {
this.primaryKeyField = value
}
/**
* @param value Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
*/
@JvmName("rqudlsaedsqlylgq")
public suspend fun textField(`value`: Output) {
this.textField = value
}
/**
* @param value Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
*/
@JvmName("lvdktgpfbaramxiy")
public suspend fun vectorField(`value`: Output) {
this.vectorField = value
}
/**
* @param value Name of the field in which Amazon Bedrock stores metadata about the vector store.
*/
@JvmName("adepkrvyskytxohh")
public suspend fun metadataField(`value`: String) {
val toBeMapped = value
val mapped = toBeMapped.let({ args0 -> of(args0) })
this.metadataField = mapped
}
/**
* @param value Name of the field in which Amazon Bedrock stores the ID for each entry.
*/
@JvmName("psexjhcmkjvhauvb")
public suspend fun primaryKeyField(`value`: String) {
val toBeMapped = value
val mapped = toBeMapped.let({ args0 -> of(args0) })
this.primaryKeyField = mapped
}
/**
* @param value Name of the field in which Amazon Bedrock stores the raw text from your data. The text is split according to the chunking strategy you choose.
*/
@JvmName("ujnhxlmyslopxdaj")
public suspend fun textField(`value`: String) {
val toBeMapped = value
val mapped = toBeMapped.let({ args0 -> of(args0) })
this.textField = mapped
}
/**
* @param value Name of the field in which Amazon Bedrock stores the vector embeddings for your data sources.
*/
@JvmName("pvoqvnjqqqwmuxqw")
public suspend fun vectorField(`value`: String) {
val toBeMapped = value
val mapped = toBeMapped.let({ args0 -> of(args0) })
this.vectorField = mapped
}
internal fun build(): AgentKnowledgeBaseStorageConfigurationRdsConfigurationFieldMappingArgs =
AgentKnowledgeBaseStorageConfigurationRdsConfigurationFieldMappingArgs(
metadataField = metadataField ?: throw PulumiNullFieldException("metadataField"),
primaryKeyField = primaryKeyField ?: throw PulumiNullFieldException("primaryKeyField"),
textField = textField ?: throw PulumiNullFieldException("textField"),
vectorField = vectorField ?: throw PulumiNullFieldException("vectorField"),
)
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy