com.pulumi.aws.sagemaker.kotlin.outputs.ModelPrimaryContainer.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pulumi-aws-kotlin Show documentation
Show all versions of pulumi-aws-kotlin Show documentation
Build cloud applications and infrastructure by combining the safety and reliability of infrastructure as code with the power of the Kotlin programming language.
@file:Suppress("NAME_SHADOWING", "DEPRECATION")
package com.pulumi.aws.sagemaker.kotlin.outputs
import kotlin.String
import kotlin.Suppress
import kotlin.collections.Map
/**
*
* @property containerHostname The DNS host name for the container.
* @property environment Environment variables for the Docker container.
* A list of key value pairs.
* @property image The registry path where the inference code image is stored in Amazon ECR.
* @property imageConfig Specifies whether the model container is in Amazon ECR or a private Docker registry accessible from your Amazon Virtual Private Cloud (VPC). For more information see [Using a Private Docker Registry for Real-Time Inference Containers](https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-containers-inference-private.html). see Image Config.
* @property inferenceSpecificationName The inference specification name in the model package version.
* @property mode The container hosts value `SingleModel/MultiModel`. The default value is `SingleModel`.
* @property modelDataSource The location of model data to deploy. Use this for uncompressed model deployment. For information about how to deploy an uncompressed model, see [Deploying uncompressed models](https://docs.aws.amazon.com/sagemaker/latest/dg/large-model-inference-uncompressed.html) in the _AWS SageMaker Developer Guide_.
* @property modelDataUrl The URL for the S3 location where model artifacts are stored.
* @property modelPackageName The Amazon Resource Name (ARN) of the model package to use to create the model.
* @property multiModelConfig Specifies additional configuration for multi-model endpoints. see Multi Model Config.
*/
public data class ModelPrimaryContainer(
public val containerHostname: String? = null,
public val environment: Map? = null,
public val image: String? = null,
public val imageConfig: ModelPrimaryContainerImageConfig? = null,
public val inferenceSpecificationName: String? = null,
public val mode: String? = null,
public val modelDataSource: ModelPrimaryContainerModelDataSource? = null,
public val modelDataUrl: String? = null,
public val modelPackageName: String? = null,
public val multiModelConfig: ModelPrimaryContainerMultiModelConfig? = null,
) {
public companion object {
public fun toKotlin(javaType: com.pulumi.aws.sagemaker.outputs.ModelPrimaryContainer): ModelPrimaryContainer = ModelPrimaryContainer(
containerHostname = javaType.containerHostname().map({ args0 -> args0 }).orElse(null),
environment = javaType.environment().map({ args0 -> args0.key.to(args0.value) }).toMap(),
image = javaType.image().map({ args0 -> args0 }).orElse(null),
imageConfig = javaType.imageConfig().map({ args0 ->
args0.let({ args0 ->
com.pulumi.aws.sagemaker.kotlin.outputs.ModelPrimaryContainerImageConfig.Companion.toKotlin(args0)
})
}).orElse(null),
inferenceSpecificationName = javaType.inferenceSpecificationName().map({ args0 ->
args0
}).orElse(null),
mode = javaType.mode().map({ args0 -> args0 }).orElse(null),
modelDataSource = javaType.modelDataSource().map({ args0 ->
args0.let({ args0 ->
com.pulumi.aws.sagemaker.kotlin.outputs.ModelPrimaryContainerModelDataSource.Companion.toKotlin(args0)
})
}).orElse(null),
modelDataUrl = javaType.modelDataUrl().map({ args0 -> args0 }).orElse(null),
modelPackageName = javaType.modelPackageName().map({ args0 -> args0 }).orElse(null),
multiModelConfig = javaType.multiModelConfig().map({ args0 ->
args0.let({ args0 ->
com.pulumi.aws.sagemaker.kotlin.outputs.ModelPrimaryContainerMultiModelConfig.Companion.toKotlin(args0)
})
}).orElse(null),
)
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy