
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.ForecastingResponse.kt Maven / Gradle / Ivy
@file:Suppress("NAME_SHADOWING", "DEPRECATION")
package com.pulumi.azurenative.machinelearningservices.kotlin.outputs
import com.pulumi.core.Either
import kotlin.Double
import kotlin.String
import kotlin.Suppress
import kotlin.collections.List
/**
* Forecasting task in AutoML Table vertical.
* @property cvSplitColumnNames Columns to use for CVSplit data.
* @property featurizationSettings Featurization inputs needed for AutoML job.
* @property forecastingSettings Forecasting task specific inputs.
* @property limitSettings Execution constraints for AutoMLJob.
* @property logVerbosity Log verbosity for the job.
* @property nCrossValidations Number of cross validation folds to be applied on training dataset
* when validation dataset is not provided.
* @property primaryMetric Primary metric for forecasting task.
* @property targetColumnName Target column name: This is prediction values column.
* Also known as label column name in context of classification tasks.
* @property taskType AutoMLJob Task type.
* Expected value is 'Forecasting'.
* @property testData Test data input.
* @property testDataSize The fraction of test dataset that needs to be set aside for validation purpose.
* Values between (0.0 , 1.0)
* Applied when validation dataset is not provided.
* @property trainingData [Required] Training data input.
* @property trainingSettings Inputs for training phase for an AutoML Job.
* @property validationData Validation data inputs.
* @property validationDataSize The fraction of training dataset that needs to be set aside for validation purpose.
* Values between (0.0 , 1.0)
* Applied when validation dataset is not provided.
* @property weightColumnName The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down.
*/
public data class ForecastingResponse(
public val cvSplitColumnNames: List? = null,
public val featurizationSettings: TableVerticalFeaturizationSettingsResponse? = null,
public val forecastingSettings: ForecastingSettingsResponse? = null,
public val limitSettings: TableVerticalLimitSettingsResponse? = null,
public val logVerbosity: String? = null,
public val nCrossValidations: Either? = null,
public val primaryMetric: String? = null,
public val targetColumnName: String? = null,
public val taskType: String,
public val testData: MLTableJobInputResponse? = null,
public val testDataSize: Double? = null,
public val trainingData: MLTableJobInputResponse,
public val trainingSettings: ForecastingTrainingSettingsResponse? = null,
public val validationData: MLTableJobInputResponse? = null,
public val validationDataSize: Double? = null,
public val weightColumnName: String? = null,
) {
public companion object {
public fun toKotlin(javaType: com.pulumi.azurenative.machinelearningservices.outputs.ForecastingResponse): ForecastingResponse = ForecastingResponse(
cvSplitColumnNames = javaType.cvSplitColumnNames().map({ args0 -> args0 }),
featurizationSettings = javaType.featurizationSettings().map({ args0 ->
args0.let({ args0 ->
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.TableVerticalFeaturizationSettingsResponse.Companion.toKotlin(args0)
})
}).orElse(null),
forecastingSettings = javaType.forecastingSettings().map({ args0 ->
args0.let({ args0 ->
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.ForecastingSettingsResponse.Companion.toKotlin(args0)
})
}).orElse(null),
limitSettings = javaType.limitSettings().map({ args0 ->
args0.let({ args0 ->
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.TableVerticalLimitSettingsResponse.Companion.toKotlin(args0)
})
}).orElse(null),
logVerbosity = javaType.logVerbosity().map({ args0 -> args0 }).orElse(null),
nCrossValidations = javaType.nCrossValidations().map({ args0 ->
args0.transform(
{ args0 ->
args0.let({ args0 ->
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.AutoNCrossValidationsResponse.Companion.toKotlin(args0)
})
},
{ args0 ->
args0.let({ args0 ->
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.CustomNCrossValidationsResponse.Companion.toKotlin(args0)
})
},
)
}).orElse(null),
primaryMetric = javaType.primaryMetric().map({ args0 -> args0 }).orElse(null),
targetColumnName = javaType.targetColumnName().map({ args0 -> args0 }).orElse(null),
taskType = javaType.taskType(),
testData = javaType.testData().map({ args0 ->
args0.let({ args0 ->
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.MLTableJobInputResponse.Companion.toKotlin(args0)
})
}).orElse(null),
testDataSize = javaType.testDataSize().map({ args0 -> args0 }).orElse(null),
trainingData = javaType.trainingData().let({ args0 ->
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.MLTableJobInputResponse.Companion.toKotlin(args0)
}),
trainingSettings = javaType.trainingSettings().map({ args0 ->
args0.let({ args0 ->
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.ForecastingTrainingSettingsResponse.Companion.toKotlin(args0)
})
}).orElse(null),
validationData = javaType.validationData().map({ args0 ->
args0.let({ args0 ->
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.MLTableJobInputResponse.Companion.toKotlin(args0)
})
}).orElse(null),
validationDataSize = javaType.validationDataSize().map({ args0 -> args0 }).orElse(null),
weightColumnName = javaType.weightColumnName().map({ args0 -> args0 }).orElse(null),
)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy