
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.PipelineJobResponse.kt Maven / Gradle / Ivy
@file:Suppress("NAME_SHADOWING", "DEPRECATION")
package com.pulumi.azurenative.machinelearningservices.kotlin.outputs
import kotlin.Any
import kotlin.Boolean
import kotlin.String
import kotlin.Suppress
import kotlin.collections.Map
/**
* Pipeline Job definition: defines generic to MFE attributes.
* @property componentId ARM resource ID of the component resource.
* @property computeId ARM resource ID of the compute resource.
* @property description The asset description text.
* @property displayName Display name of job.
* @property experimentName The name of the experiment the job belongs to. If not set, the job is placed in the "Default" experiment.
* @property identity Identity configuration. If set, this should be one of AmlToken, ManagedIdentity, UserIdentity or null.
* Defaults to AmlToken if null.
* @property inputs Inputs for the pipeline job.
* @property isArchived Is the asset archived?
* @property jobType Enum to determine the type of job.
* Expected value is 'Pipeline'.
* @property jobs Jobs construct the Pipeline Job.
* @property outputs Outputs for the pipeline job
* @property properties The asset property dictionary.
* @property services List of JobEndpoints.
* For local jobs, a job endpoint will have an endpoint value of FileStreamObject.
* @property settings Pipeline settings, for things like ContinueRunOnStepFailure etc.
* @property sourceJobId ARM resource ID of source job.
* @property status Status of the job.
* @property tags Tag dictionary. Tags can be added, removed, and updated.
*/
public data class PipelineJobResponse(
public val componentId: String? = null,
public val computeId: String? = null,
public val description: String? = null,
public val displayName: String? = null,
public val experimentName: String? = null,
public val identity: Any? = null,
public val inputs: Map? = null,
public val isArchived: Boolean? = null,
public val jobType: String,
public val jobs: Map? = null,
public val outputs: Map? = null,
public val properties: Map? = null,
public val services: Map? = null,
public val settings: Any? = null,
public val sourceJobId: String? = null,
public val status: String,
public val tags: Map? = null,
) {
public companion object {
public fun toKotlin(javaType: com.pulumi.azurenative.machinelearningservices.outputs.PipelineJobResponse): PipelineJobResponse = PipelineJobResponse(
componentId = javaType.componentId().map({ args0 -> args0 }).orElse(null),
computeId = javaType.computeId().map({ args0 -> args0 }).orElse(null),
description = javaType.description().map({ args0 -> args0 }).orElse(null),
displayName = javaType.displayName().map({ args0 -> args0 }).orElse(null),
experimentName = javaType.experimentName().map({ args0 -> args0 }).orElse(null),
identity = javaType.identity().map({ args0 -> args0 }).orElse(null),
inputs = javaType.inputs().map({ args0 -> args0.key.to(args0.value) }).toMap(),
isArchived = javaType.isArchived().map({ args0 -> args0 }).orElse(null),
jobType = javaType.jobType(),
jobs = javaType.jobs().map({ args0 -> args0.key.to(args0.value) }).toMap(),
outputs = javaType.outputs().map({ args0 -> args0.key.to(args0.value) }).toMap(),
properties = javaType.properties().map({ args0 -> args0.key.to(args0.value) }).toMap(),
services = javaType.services().map({ args0 ->
args0.key.to(
args0.value.let({ args0 ->
com.pulumi.azurenative.machinelearningservices.kotlin.outputs.JobServiceResponse.Companion.toKotlin(args0)
}),
)
}).toMap(),
settings = javaType.settings().map({ args0 -> args0 }).orElse(null),
sourceJobId = javaType.sourceJobId().map({ args0 -> args0 }).orElse(null),
status = javaType.status(),
tags = javaType.tags().map({ args0 -> args0.key.to(args0.value) }).toMap(),
)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy