com.pulumi.gcp.compute.kotlin.outputs.RegionAutoscalerAutoscalingPolicyCpuUtilization.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pulumi-gcp-kotlin Show documentation
Show all versions of pulumi-gcp-kotlin Show documentation
Build cloud applications and infrastructure by combining the safety and reliability of infrastructure as code with the power of the Kotlin programming language.
@file:Suppress("NAME_SHADOWING", "DEPRECATION")
package com.pulumi.gcp.compute.kotlin.outputs
import kotlin.Double
import kotlin.String
import kotlin.Suppress
/**
*
* @property predictiveMethod Indicates whether predictive autoscaling based on CPU metric is enabled. Valid values are:
* - NONE (default). No predictive method is used. The autoscaler scales the group to meet current demand based on real-time metrics.
* - OPTIMIZE_AVAILABILITY. Predictive autoscaling improves availability by monitoring daily and weekly load patterns and scaling out ahead of anticipated demand.
* @property target The target CPU utilization that the autoscaler should maintain.
* Must be a float value in the range (0, 1]. If not specified, the
* default is 0.6.
* If the CPU level is below the target utilization, the autoscaler
* scales down the number of instances until it reaches the minimum
* number of instances you specified or until the average CPU of
* your instances reaches the target utilization.
* If the average CPU is above the target utilization, the autoscaler
* scales up until it reaches the maximum number of instances you
* specified or until the average utilization reaches the target
* utilization.
*/
public data class RegionAutoscalerAutoscalingPolicyCpuUtilization(
public val predictiveMethod: String? = null,
public val target: Double,
) {
public companion object {
public fun toKotlin(javaType: com.pulumi.gcp.compute.outputs.RegionAutoscalerAutoscalingPolicyCpuUtilization): RegionAutoscalerAutoscalingPolicyCpuUtilization =
RegionAutoscalerAutoscalingPolicyCpuUtilization(
predictiveMethod = javaType.predictiveMethod().map({ args0 -> args0 }).orElse(null),
target = javaType.target(),
)
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy