All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.pulumi.gcp.dataproc.kotlin.JobArgs.kt Maven / Gradle / Ivy

Go to download

Build cloud applications and infrastructure by combining the safety and reliability of infrastructure as code with the power of the Kotlin programming language.

There is a newer version: 8.12.0.0
Show newest version
@file:Suppress("NAME_SHADOWING", "DEPRECATION")

package com.pulumi.gcp.dataproc.kotlin

import com.pulumi.core.Output
import com.pulumi.core.Output.of
import com.pulumi.gcp.dataproc.JobArgs.builder
import com.pulumi.gcp.dataproc.kotlin.inputs.JobHadoopConfigArgs
import com.pulumi.gcp.dataproc.kotlin.inputs.JobHadoopConfigArgsBuilder
import com.pulumi.gcp.dataproc.kotlin.inputs.JobHiveConfigArgs
import com.pulumi.gcp.dataproc.kotlin.inputs.JobHiveConfigArgsBuilder
import com.pulumi.gcp.dataproc.kotlin.inputs.JobPigConfigArgs
import com.pulumi.gcp.dataproc.kotlin.inputs.JobPigConfigArgsBuilder
import com.pulumi.gcp.dataproc.kotlin.inputs.JobPlacementArgs
import com.pulumi.gcp.dataproc.kotlin.inputs.JobPlacementArgsBuilder
import com.pulumi.gcp.dataproc.kotlin.inputs.JobPrestoConfigArgs
import com.pulumi.gcp.dataproc.kotlin.inputs.JobPrestoConfigArgsBuilder
import com.pulumi.gcp.dataproc.kotlin.inputs.JobPysparkConfigArgs
import com.pulumi.gcp.dataproc.kotlin.inputs.JobPysparkConfigArgsBuilder
import com.pulumi.gcp.dataproc.kotlin.inputs.JobReferenceArgs
import com.pulumi.gcp.dataproc.kotlin.inputs.JobReferenceArgsBuilder
import com.pulumi.gcp.dataproc.kotlin.inputs.JobSchedulingArgs
import com.pulumi.gcp.dataproc.kotlin.inputs.JobSchedulingArgsBuilder
import com.pulumi.gcp.dataproc.kotlin.inputs.JobSparkConfigArgs
import com.pulumi.gcp.dataproc.kotlin.inputs.JobSparkConfigArgsBuilder
import com.pulumi.gcp.dataproc.kotlin.inputs.JobSparksqlConfigArgs
import com.pulumi.gcp.dataproc.kotlin.inputs.JobSparksqlConfigArgsBuilder
import com.pulumi.kotlin.ConvertibleToJava
import com.pulumi.kotlin.PulumiTagMarker
import com.pulumi.kotlin.applySuspend
import kotlin.Boolean
import kotlin.Pair
import kotlin.String
import kotlin.Suppress
import kotlin.Unit
import kotlin.collections.Map
import kotlin.jvm.JvmName

/**
 * Manages a job resource within a Dataproc cluster within GCE. For more information see
 * [the official dataproc documentation](https://cloud.google.com/dataproc/).
 * !> **Note:** This resource does not support 'update' and changing any attributes will cause the resource to be recreated.
 * ## Example Usage
 * 
 * ```typescript
 * import * as pulumi from "@pulumi/pulumi";
 * import * as gcp from "@pulumi/gcp";
 * const mycluster = new gcp.dataproc.Cluster("mycluster", {
 *     name: "dproc-cluster-unique-name",
 *     region: "us-central1",
 * });
 * // Submit an example spark job to a dataproc cluster
 * const spark = new gcp.dataproc.Job("spark", {
 *     region: mycluster.region,
 *     forceDelete: true,
 *     placement: {
 *         clusterName: mycluster.name,
 *     },
 *     sparkConfig: {
 *         mainClass: "org.apache.spark.examples.SparkPi",
 *         jarFileUris: ["file:///usr/lib/spark/examples/jars/spark-examples.jar"],
 *         args: ["1000"],
 *         properties: {
 *             "spark.logConf": "true",
 *         },
 *         loggingConfig: {
 *             driverLogLevels: {
 *                 root: "INFO",
 *             },
 *         },
 *     },
 * });
 * // Submit an example pyspark job to a dataproc cluster
 * const pyspark = new gcp.dataproc.Job("pyspark", {
 *     region: mycluster.region,
 *     forceDelete: true,
 *     placement: {
 *         clusterName: mycluster.name,
 *     },
 *     pysparkConfig: {
 *         mainPythonFileUri: "gs://dataproc-examples-2f10d78d114f6aaec76462e3c310f31f/src/pyspark/hello-world/hello-world.py",
 *         properties: {
 *             "spark.logConf": "true",
 *         },
 *     },
 * });
 * export const sparkStatus = spark.statuses.apply(statuses => statuses[0].state);
 * export const pysparkStatus = pyspark.statuses.apply(statuses => statuses[0].state);
 * ```
 * ```python
 * import pulumi
 * import pulumi_gcp as gcp
 * mycluster = gcp.dataproc.Cluster("mycluster",
 *     name="dproc-cluster-unique-name",
 *     region="us-central1")
 * # Submit an example spark job to a dataproc cluster
 * spark = gcp.dataproc.Job("spark",
 *     region=mycluster.region,
 *     force_delete=True,
 *     placement=gcp.dataproc.JobPlacementArgs(
 *         cluster_name=mycluster.name,
 *     ),
 *     spark_config=gcp.dataproc.JobSparkConfigArgs(
 *         main_class="org.apache.spark.examples.SparkPi",
 *         jar_file_uris=["file:///usr/lib/spark/examples/jars/spark-examples.jar"],
 *         args=["1000"],
 *         properties={
 *             "spark.logConf": "true",
 *         },
 *         logging_config=gcp.dataproc.JobSparkConfigLoggingConfigArgs(
 *             driver_log_levels={
 *                 "root": "INFO",
 *             },
 *         ),
 *     ))
 * # Submit an example pyspark job to a dataproc cluster
 * pyspark = gcp.dataproc.Job("pyspark",
 *     region=mycluster.region,
 *     force_delete=True,
 *     placement=gcp.dataproc.JobPlacementArgs(
 *         cluster_name=mycluster.name,
 *     ),
 *     pyspark_config=gcp.dataproc.JobPysparkConfigArgs(
 *         main_python_file_uri="gs://dataproc-examples-2f10d78d114f6aaec76462e3c310f31f/src/pyspark/hello-world/hello-world.py",
 *         properties={
 *             "spark.logConf": "true",
 *         },
 *     ))
 * pulumi.export("sparkStatus", spark.statuses[0].state)
 * pulumi.export("pysparkStatus", pyspark.statuses[0].state)
 * ```
 * ```csharp
 * using System.Collections.Generic;
 * using System.Linq;
 * using Pulumi;
 * using Gcp = Pulumi.Gcp;
 * return await Deployment.RunAsync(() =>
 * {
 *     var mycluster = new Gcp.Dataproc.Cluster("mycluster", new()
 *     {
 *         Name = "dproc-cluster-unique-name",
 *         Region = "us-central1",
 *     });
 *     // Submit an example spark job to a dataproc cluster
 *     var spark = new Gcp.Dataproc.Job("spark", new()
 *     {
 *         Region = mycluster.Region,
 *         ForceDelete = true,
 *         Placement = new Gcp.Dataproc.Inputs.JobPlacementArgs
 *         {
 *             ClusterName = mycluster.Name,
 *         },
 *         SparkConfig = new Gcp.Dataproc.Inputs.JobSparkConfigArgs
 *         {
 *             MainClass = "org.apache.spark.examples.SparkPi",
 *             JarFileUris = new[]
 *             {
 *                 "file:///usr/lib/spark/examples/jars/spark-examples.jar",
 *             },
 *             Args = new[]
 *             {
 *                 "1000",
 *             },
 *             Properties =
 *             {
 *                 { "spark.logConf", "true" },
 *             },
 *             LoggingConfig = new Gcp.Dataproc.Inputs.JobSparkConfigLoggingConfigArgs
 *             {
 *                 DriverLogLevels =
 *                 {
 *                     { "root", "INFO" },
 *                 },
 *             },
 *         },
 *     });
 *     // Submit an example pyspark job to a dataproc cluster
 *     var pyspark = new Gcp.Dataproc.Job("pyspark", new()
 *     {
 *         Region = mycluster.Region,
 *         ForceDelete = true,
 *         Placement = new Gcp.Dataproc.Inputs.JobPlacementArgs
 *         {
 *             ClusterName = mycluster.Name,
 *         },
 *         PysparkConfig = new Gcp.Dataproc.Inputs.JobPysparkConfigArgs
 *         {
 *             MainPythonFileUri = "gs://dataproc-examples-2f10d78d114f6aaec76462e3c310f31f/src/pyspark/hello-world/hello-world.py",
 *             Properties =
 *             {
 *                 { "spark.logConf", "true" },
 *             },
 *         },
 *     });
 *     return new Dictionary
 *     {
 *         ["sparkStatus"] = spark.Statuses.Apply(statuses => statuses[0].State),
 *         ["pysparkStatus"] = pyspark.Statuses.Apply(statuses => statuses[0].State),
 *     };
 * });
 * ```
 * ```go
 * package main
 * import (
 * 	"github.com/pulumi/pulumi-gcp/sdk/v7/go/gcp/dataproc"
 * 	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
 * )
 * func main() {
 * 	pulumi.Run(func(ctx *pulumi.Context) error {
 * 		mycluster, err := dataproc.NewCluster(ctx, "mycluster", &dataproc.ClusterArgs{
 * 			Name:   pulumi.String("dproc-cluster-unique-name"),
 * 			Region: pulumi.String("us-central1"),
 * 		})
 * 		if err != nil {
 * 			return err
 * 		}
 * 		// Submit an example spark job to a dataproc cluster
 * 		spark, err := dataproc.NewJob(ctx, "spark", &dataproc.JobArgs{
 * 			Region:      mycluster.Region,
 * 			ForceDelete: pulumi.Bool(true),
 * 			Placement: &dataproc.JobPlacementArgs{
 * 				ClusterName: mycluster.Name,
 * 			},
 * 			SparkConfig: &dataproc.JobSparkConfigArgs{
 * 				MainClass: pulumi.String("org.apache.spark.examples.SparkPi"),
 * 				JarFileUris: pulumi.StringArray{
 * 					pulumi.String("file:///usr/lib/spark/examples/jars/spark-examples.jar"),
 * 				},
 * 				Args: pulumi.StringArray{
 * 					pulumi.String("1000"),
 * 				},
 * 				Properties: pulumi.StringMap{
 * 					"spark.logConf": pulumi.String("true"),
 * 				},
 * 				LoggingConfig: &dataproc.JobSparkConfigLoggingConfigArgs{
 * 					DriverLogLevels: pulumi.StringMap{
 * 						"root": pulumi.String("INFO"),
 * 					},
 * 				},
 * 			},
 * 		})
 * 		if err != nil {
 * 			return err
 * 		}
 * 		// Submit an example pyspark job to a dataproc cluster
 * 		pyspark, err := dataproc.NewJob(ctx, "pyspark", &dataproc.JobArgs{
 * 			Region:      mycluster.Region,
 * 			ForceDelete: pulumi.Bool(true),
 * 			Placement: &dataproc.JobPlacementArgs{
 * 				ClusterName: mycluster.Name,
 * 			},
 * 			PysparkConfig: &dataproc.JobPysparkConfigArgs{
 * 				MainPythonFileUri: pulumi.String("gs://dataproc-examples-2f10d78d114f6aaec76462e3c310f31f/src/pyspark/hello-world/hello-world.py"),
 * 				Properties: pulumi.StringMap{
 * 					"spark.logConf": pulumi.String("true"),
 * 				},
 * 			},
 * 		})
 * 		if err != nil {
 * 			return err
 * 		}
 * 		ctx.Export("sparkStatus", spark.Statuses.ApplyT(func(statuses []dataproc.JobStatus) (*string, error) {
 * 			return &statuses[0].State, nil
 * 		}).(pulumi.StringPtrOutput))
 * 		ctx.Export("pysparkStatus", pyspark.Statuses.ApplyT(func(statuses []dataproc.JobStatus) (*string, error) {
 * 			return &statuses[0].State, nil
 * 		}).(pulumi.StringPtrOutput))
 * 		return nil
 * 	})
 * }
 * ```
 * ```java
 * package generated_program;
 * import com.pulumi.Context;
 * import com.pulumi.Pulumi;
 * import com.pulumi.core.Output;
 * import com.pulumi.gcp.dataproc.Cluster;
 * import com.pulumi.gcp.dataproc.ClusterArgs;
 * import com.pulumi.gcp.dataproc.Job;
 * import com.pulumi.gcp.dataproc.JobArgs;
 * import com.pulumi.gcp.dataproc.inputs.JobPlacementArgs;
 * import com.pulumi.gcp.dataproc.inputs.JobSparkConfigArgs;
 * import com.pulumi.gcp.dataproc.inputs.JobSparkConfigLoggingConfigArgs;
 * import com.pulumi.gcp.dataproc.inputs.JobPysparkConfigArgs;
 * import java.util.List;
 * import java.util.ArrayList;
 * import java.util.Map;
 * import java.io.File;
 * import java.nio.file.Files;
 * import java.nio.file.Paths;
 * public class App {
 *     public static void main(String[] args) {
 *         Pulumi.run(App::stack);
 *     }
 *     public static void stack(Context ctx) {
 *         var mycluster = new Cluster("mycluster", ClusterArgs.builder()
 *             .name("dproc-cluster-unique-name")
 *             .region("us-central1")
 *             .build());
 *         // Submit an example spark job to a dataproc cluster
 *         var spark = new Job("spark", JobArgs.builder()
 *             .region(mycluster.region())
 *             .forceDelete(true)
 *             .placement(JobPlacementArgs.builder()
 *                 .clusterName(mycluster.name())
 *                 .build())
 *             .sparkConfig(JobSparkConfigArgs.builder()
 *                 .mainClass("org.apache.spark.examples.SparkPi")
 *                 .jarFileUris("file:///usr/lib/spark/examples/jars/spark-examples.jar")
 *                 .args("1000")
 *                 .properties(Map.of("spark.logConf", "true"))
 *                 .loggingConfig(JobSparkConfigLoggingConfigArgs.builder()
 *                     .driverLogLevels(Map.of("root", "INFO"))
 *                     .build())
 *                 .build())
 *             .build());
 *         // Submit an example pyspark job to a dataproc cluster
 *         var pyspark = new Job("pyspark", JobArgs.builder()
 *             .region(mycluster.region())
 *             .forceDelete(true)
 *             .placement(JobPlacementArgs.builder()
 *                 .clusterName(mycluster.name())
 *                 .build())
 *             .pysparkConfig(JobPysparkConfigArgs.builder()
 *                 .mainPythonFileUri("gs://dataproc-examples-2f10d78d114f6aaec76462e3c310f31f/src/pyspark/hello-world/hello-world.py")
 *                 .properties(Map.of("spark.logConf", "true"))
 *                 .build())
 *             .build());
 *         ctx.export("sparkStatus", spark.statuses().applyValue(statuses -> statuses[0].state()));
 *         ctx.export("pysparkStatus", pyspark.statuses().applyValue(statuses -> statuses[0].state()));
 *     }
 * }
 * ```
 * ```yaml
 * resources:
 *   mycluster:
 *     type: gcp:dataproc:Cluster
 *     properties:
 *       name: dproc-cluster-unique-name
 *       region: us-central1
 *   # Submit an example spark job to a dataproc cluster
 *   spark:
 *     type: gcp:dataproc:Job
 *     properties:
 *       region: ${mycluster.region}
 *       forceDelete: true
 *       placement:
 *         clusterName: ${mycluster.name}
 *       sparkConfig:
 *         mainClass: org.apache.spark.examples.SparkPi
 *         jarFileUris:
 *           - file:///usr/lib/spark/examples/jars/spark-examples.jar
 *         args:
 *           - '1000'
 *         properties:
 *           spark.logConf: 'true'
 *         loggingConfig:
 *           driverLogLevels:
 *             root: INFO
 *   # Submit an example pyspark job to a dataproc cluster
 *   pyspark:
 *     type: gcp:dataproc:Job
 *     properties:
 *       region: ${mycluster.region}
 *       forceDelete: true
 *       placement:
 *         clusterName: ${mycluster.name}
 *       pysparkConfig:
 *         mainPythonFileUri: gs://dataproc-examples-2f10d78d114f6aaec76462e3c310f31f/src/pyspark/hello-world/hello-world.py
 *         properties:
 *           spark.logConf: 'true'
 * outputs:
 *   # Check out current state of the jobs
 *   sparkStatus: ${spark.statuses[0].state}
 *   pysparkStatus: ${pyspark.statuses[0].state}
 * ```
 * 
 * ## Import
 * This resource does not support import.
 * @property forceDelete By default, you can only delete inactive jobs within
 * Dataproc. Setting this to true, and calling destroy, will ensure that the
 * job is first cancelled before issuing the delete.
 * @property hadoopConfig The config of Hadoop job
 * @property hiveConfig The config of hive job
 * @property labels The list of labels (key/value pairs) to add to the job.
 * **Note**: This field is non-authoritative, and will only manage the labels present in your configuration.
 * Please refer to the field 'effective_labels' for all of the labels present on the resource.
 * @property pigConfig The config of pag job.
 * @property placement The config of job placement.
 * @property prestoConfig The config of presto job
 * @property project The project in which the `cluster` can be found and jobs
 * subsequently run against. If it is not provided, the provider project is used.
 * @property pysparkConfig The config of pySpark job.
 * @property reference The reference of the job
 * @property region The Cloud Dataproc region. This essentially determines which clusters are available
 * for this job to be submitted to. If not specified, defaults to `global`.
 * @property scheduling Optional. Job scheduling configuration.
 * @property sparkConfig The config of the Spark job.
 * @property sparksqlConfig The config of SparkSql job
 */
public data class JobArgs(
    public val forceDelete: Output? = null,
    public val hadoopConfig: Output? = null,
    public val hiveConfig: Output? = null,
    public val labels: Output>? = null,
    public val pigConfig: Output? = null,
    public val placement: Output? = null,
    public val prestoConfig: Output? = null,
    public val project: Output? = null,
    public val pysparkConfig: Output? = null,
    public val reference: Output? = null,
    public val region: Output? = null,
    public val scheduling: Output? = null,
    public val sparkConfig: Output? = null,
    public val sparksqlConfig: Output? = null,
) : ConvertibleToJava {
    override fun toJava(): com.pulumi.gcp.dataproc.JobArgs = com.pulumi.gcp.dataproc.JobArgs.builder()
        .forceDelete(forceDelete?.applyValue({ args0 -> args0 }))
        .hadoopConfig(hadoopConfig?.applyValue({ args0 -> args0.let({ args0 -> args0.toJava() }) }))
        .hiveConfig(hiveConfig?.applyValue({ args0 -> args0.let({ args0 -> args0.toJava() }) }))
        .labels(labels?.applyValue({ args0 -> args0.map({ args0 -> args0.key.to(args0.value) }).toMap() }))
        .pigConfig(pigConfig?.applyValue({ args0 -> args0.let({ args0 -> args0.toJava() }) }))
        .placement(placement?.applyValue({ args0 -> args0.let({ args0 -> args0.toJava() }) }))
        .prestoConfig(prestoConfig?.applyValue({ args0 -> args0.let({ args0 -> args0.toJava() }) }))
        .project(project?.applyValue({ args0 -> args0 }))
        .pysparkConfig(pysparkConfig?.applyValue({ args0 -> args0.let({ args0 -> args0.toJava() }) }))
        .reference(reference?.applyValue({ args0 -> args0.let({ args0 -> args0.toJava() }) }))
        .region(region?.applyValue({ args0 -> args0 }))
        .scheduling(scheduling?.applyValue({ args0 -> args0.let({ args0 -> args0.toJava() }) }))
        .sparkConfig(sparkConfig?.applyValue({ args0 -> args0.let({ args0 -> args0.toJava() }) }))
        .sparksqlConfig(
            sparksqlConfig?.applyValue({ args0 ->
                args0.let({ args0 ->
                    args0.toJava()
                })
            }),
        ).build()
}

/**
 * Builder for [JobArgs].
 */
@PulumiTagMarker
public class JobArgsBuilder internal constructor() {
    private var forceDelete: Output? = null

    private var hadoopConfig: Output? = null

    private var hiveConfig: Output? = null

    private var labels: Output>? = null

    private var pigConfig: Output? = null

    private var placement: Output? = null

    private var prestoConfig: Output? = null

    private var project: Output? = null

    private var pysparkConfig: Output? = null

    private var reference: Output? = null

    private var region: Output? = null

    private var scheduling: Output? = null

    private var sparkConfig: Output? = null

    private var sparksqlConfig: Output? = null

    /**
     * @param value By default, you can only delete inactive jobs within
     * Dataproc. Setting this to true, and calling destroy, will ensure that the
     * job is first cancelled before issuing the delete.
     */
    @JvmName("ncufptilmfjggqyd")
    public suspend fun forceDelete(`value`: Output) {
        this.forceDelete = value
    }

    /**
     * @param value The config of Hadoop job
     */
    @JvmName("pbwgohiswovlljdn")
    public suspend fun hadoopConfig(`value`: Output) {
        this.hadoopConfig = value
    }

    /**
     * @param value The config of hive job
     */
    @JvmName("jioflluqtsvodgdo")
    public suspend fun hiveConfig(`value`: Output) {
        this.hiveConfig = value
    }

    /**
     * @param value The list of labels (key/value pairs) to add to the job.
     * **Note**: This field is non-authoritative, and will only manage the labels present in your configuration.
     * Please refer to the field 'effective_labels' for all of the labels present on the resource.
     */
    @JvmName("nojxkdcphkjytpxv")
    public suspend fun labels(`value`: Output>) {
        this.labels = value
    }

    /**
     * @param value The config of pag job.
     */
    @JvmName("huinqmjraimoiiro")
    public suspend fun pigConfig(`value`: Output) {
        this.pigConfig = value
    }

    /**
     * @param value The config of job placement.
     */
    @JvmName("atfybbflolkogxnf")
    public suspend fun placement(`value`: Output) {
        this.placement = value
    }

    /**
     * @param value The config of presto job
     */
    @JvmName("csqdnjqjgeovaycv")
    public suspend fun prestoConfig(`value`: Output) {
        this.prestoConfig = value
    }

    /**
     * @param value The project in which the `cluster` can be found and jobs
     * subsequently run against. If it is not provided, the provider project is used.
     */
    @JvmName("ryanwilyvhfxtfrj")
    public suspend fun project(`value`: Output) {
        this.project = value
    }

    /**
     * @param value The config of pySpark job.
     */
    @JvmName("jctosrwuupulfyvx")
    public suspend fun pysparkConfig(`value`: Output) {
        this.pysparkConfig = value
    }

    /**
     * @param value The reference of the job
     */
    @JvmName("sahabtnntjmxrmxu")
    public suspend fun reference(`value`: Output) {
        this.reference = value
    }

    /**
     * @param value The Cloud Dataproc region. This essentially determines which clusters are available
     * for this job to be submitted to. If not specified, defaults to `global`.
     */
    @JvmName("kaietrreqosqkgmx")
    public suspend fun region(`value`: Output) {
        this.region = value
    }

    /**
     * @param value Optional. Job scheduling configuration.
     */
    @JvmName("eexaxwppobicoqxq")
    public suspend fun scheduling(`value`: Output) {
        this.scheduling = value
    }

    /**
     * @param value The config of the Spark job.
     */
    @JvmName("teuriycaobtvfjuc")
    public suspend fun sparkConfig(`value`: Output) {
        this.sparkConfig = value
    }

    /**
     * @param value The config of SparkSql job
     */
    @JvmName("fuwwhehqsmlkfewy")
    public suspend fun sparksqlConfig(`value`: Output) {
        this.sparksqlConfig = value
    }

    /**
     * @param value By default, you can only delete inactive jobs within
     * Dataproc. Setting this to true, and calling destroy, will ensure that the
     * job is first cancelled before issuing the delete.
     */
    @JvmName("ktaycmmexelrxavw")
    public suspend fun forceDelete(`value`: Boolean?) {
        val toBeMapped = value
        val mapped = toBeMapped?.let({ args0 -> of(args0) })
        this.forceDelete = mapped
    }

    /**
     * @param value The config of Hadoop job
     */
    @JvmName("jiogkvjorwpujqxe")
    public suspend fun hadoopConfig(`value`: JobHadoopConfigArgs?) {
        val toBeMapped = value
        val mapped = toBeMapped?.let({ args0 -> of(args0) })
        this.hadoopConfig = mapped
    }

    /**
     * @param argument The config of Hadoop job
     */
    @JvmName("bctleygifuxkpwic")
    public suspend fun hadoopConfig(argument: suspend JobHadoopConfigArgsBuilder.() -> Unit) {
        val toBeMapped = JobHadoopConfigArgsBuilder().applySuspend { argument() }.build()
        val mapped = of(toBeMapped)
        this.hadoopConfig = mapped
    }

    /**
     * @param value The config of hive job
     */
    @JvmName("wgrdfmlxykkijahv")
    public suspend fun hiveConfig(`value`: JobHiveConfigArgs?) {
        val toBeMapped = value
        val mapped = toBeMapped?.let({ args0 -> of(args0) })
        this.hiveConfig = mapped
    }

    /**
     * @param argument The config of hive job
     */
    @JvmName("grssfgxdjqulveyj")
    public suspend fun hiveConfig(argument: suspend JobHiveConfigArgsBuilder.() -> Unit) {
        val toBeMapped = JobHiveConfigArgsBuilder().applySuspend { argument() }.build()
        val mapped = of(toBeMapped)
        this.hiveConfig = mapped
    }

    /**
     * @param value The list of labels (key/value pairs) to add to the job.
     * **Note**: This field is non-authoritative, and will only manage the labels present in your configuration.
     * Please refer to the field 'effective_labels' for all of the labels present on the resource.
     */
    @JvmName("qaogeaaaqhoipahm")
    public suspend fun labels(`value`: Map?) {
        val toBeMapped = value
        val mapped = toBeMapped?.let({ args0 -> of(args0) })
        this.labels = mapped
    }

    /**
     * @param values The list of labels (key/value pairs) to add to the job.
     * **Note**: This field is non-authoritative, and will only manage the labels present in your configuration.
     * Please refer to the field 'effective_labels' for all of the labels present on the resource.
     */
    @JvmName("dvxbjypolvgihdjo")
    public fun labels(vararg values: Pair) {
        val toBeMapped = values.toMap()
        val mapped = toBeMapped.let({ args0 -> of(args0) })
        this.labels = mapped
    }

    /**
     * @param value The config of pag job.
     */
    @JvmName("fyaswidpnhwrtqbo")
    public suspend fun pigConfig(`value`: JobPigConfigArgs?) {
        val toBeMapped = value
        val mapped = toBeMapped?.let({ args0 -> of(args0) })
        this.pigConfig = mapped
    }

    /**
     * @param argument The config of pag job.
     */
    @JvmName("jatjwoxodqndovso")
    public suspend fun pigConfig(argument: suspend JobPigConfigArgsBuilder.() -> Unit) {
        val toBeMapped = JobPigConfigArgsBuilder().applySuspend { argument() }.build()
        val mapped = of(toBeMapped)
        this.pigConfig = mapped
    }

    /**
     * @param value The config of job placement.
     */
    @JvmName("etivgshmjfotxnqg")
    public suspend fun placement(`value`: JobPlacementArgs?) {
        val toBeMapped = value
        val mapped = toBeMapped?.let({ args0 -> of(args0) })
        this.placement = mapped
    }

    /**
     * @param argument The config of job placement.
     */
    @JvmName("hfemblhylfeysqva")
    public suspend fun placement(argument: suspend JobPlacementArgsBuilder.() -> Unit) {
        val toBeMapped = JobPlacementArgsBuilder().applySuspend { argument() }.build()
        val mapped = of(toBeMapped)
        this.placement = mapped
    }

    /**
     * @param value The config of presto job
     */
    @JvmName("ttqnttsunriwhavm")
    public suspend fun prestoConfig(`value`: JobPrestoConfigArgs?) {
        val toBeMapped = value
        val mapped = toBeMapped?.let({ args0 -> of(args0) })
        this.prestoConfig = mapped
    }

    /**
     * @param argument The config of presto job
     */
    @JvmName("ayceqrfhqhvdismj")
    public suspend fun prestoConfig(argument: suspend JobPrestoConfigArgsBuilder.() -> Unit) {
        val toBeMapped = JobPrestoConfigArgsBuilder().applySuspend { argument() }.build()
        val mapped = of(toBeMapped)
        this.prestoConfig = mapped
    }

    /**
     * @param value The project in which the `cluster` can be found and jobs
     * subsequently run against. If it is not provided, the provider project is used.
     */
    @JvmName("essehufxwsdjgoov")
    public suspend fun project(`value`: String?) {
        val toBeMapped = value
        val mapped = toBeMapped?.let({ args0 -> of(args0) })
        this.project = mapped
    }

    /**
     * @param value The config of pySpark job.
     */
    @JvmName("dontyudqxpkkgilq")
    public suspend fun pysparkConfig(`value`: JobPysparkConfigArgs?) {
        val toBeMapped = value
        val mapped = toBeMapped?.let({ args0 -> of(args0) })
        this.pysparkConfig = mapped
    }

    /**
     * @param argument The config of pySpark job.
     */
    @JvmName("evksoajucjkbehvg")
    public suspend fun pysparkConfig(argument: suspend JobPysparkConfigArgsBuilder.() -> Unit) {
        val toBeMapped = JobPysparkConfigArgsBuilder().applySuspend { argument() }.build()
        val mapped = of(toBeMapped)
        this.pysparkConfig = mapped
    }

    /**
     * @param value The reference of the job
     */
    @JvmName("igyyletnihbdpvah")
    public suspend fun reference(`value`: JobReferenceArgs?) {
        val toBeMapped = value
        val mapped = toBeMapped?.let({ args0 -> of(args0) })
        this.reference = mapped
    }

    /**
     * @param argument The reference of the job
     */
    @JvmName("xywxborinvhflbjx")
    public suspend fun reference(argument: suspend JobReferenceArgsBuilder.() -> Unit) {
        val toBeMapped = JobReferenceArgsBuilder().applySuspend { argument() }.build()
        val mapped = of(toBeMapped)
        this.reference = mapped
    }

    /**
     * @param value The Cloud Dataproc region. This essentially determines which clusters are available
     * for this job to be submitted to. If not specified, defaults to `global`.
     */
    @JvmName("vqmwspvfiiexhchu")
    public suspend fun region(`value`: String?) {
        val toBeMapped = value
        val mapped = toBeMapped?.let({ args0 -> of(args0) })
        this.region = mapped
    }

    /**
     * @param value Optional. Job scheduling configuration.
     */
    @JvmName("quhqxgnahxkkogip")
    public suspend fun scheduling(`value`: JobSchedulingArgs?) {
        val toBeMapped = value
        val mapped = toBeMapped?.let({ args0 -> of(args0) })
        this.scheduling = mapped
    }

    /**
     * @param argument Optional. Job scheduling configuration.
     */
    @JvmName("ewflsabvhhljsvkf")
    public suspend fun scheduling(argument: suspend JobSchedulingArgsBuilder.() -> Unit) {
        val toBeMapped = JobSchedulingArgsBuilder().applySuspend { argument() }.build()
        val mapped = of(toBeMapped)
        this.scheduling = mapped
    }

    /**
     * @param value The config of the Spark job.
     */
    @JvmName("xpahyfyilyqekwiv")
    public suspend fun sparkConfig(`value`: JobSparkConfigArgs?) {
        val toBeMapped = value
        val mapped = toBeMapped?.let({ args0 -> of(args0) })
        this.sparkConfig = mapped
    }

    /**
     * @param argument The config of the Spark job.
     */
    @JvmName("tsehupcqfqfxynni")
    public suspend fun sparkConfig(argument: suspend JobSparkConfigArgsBuilder.() -> Unit) {
        val toBeMapped = JobSparkConfigArgsBuilder().applySuspend { argument() }.build()
        val mapped = of(toBeMapped)
        this.sparkConfig = mapped
    }

    /**
     * @param value The config of SparkSql job
     */
    @JvmName("laxhybctrrhaqpvf")
    public suspend fun sparksqlConfig(`value`: JobSparksqlConfigArgs?) {
        val toBeMapped = value
        val mapped = toBeMapped?.let({ args0 -> of(args0) })
        this.sparksqlConfig = mapped
    }

    /**
     * @param argument The config of SparkSql job
     */
    @JvmName("fhmgecmpduxgkxhx")
    public suspend fun sparksqlConfig(argument: suspend JobSparksqlConfigArgsBuilder.() -> Unit) {
        val toBeMapped = JobSparksqlConfigArgsBuilder().applySuspend { argument() }.build()
        val mapped = of(toBeMapped)
        this.sparksqlConfig = mapped
    }

    internal fun build(): JobArgs = JobArgs(
        forceDelete = forceDelete,
        hadoopConfig = hadoopConfig,
        hiveConfig = hiveConfig,
        labels = labels,
        pigConfig = pigConfig,
        placement = placement,
        prestoConfig = prestoConfig,
        project = project,
        pysparkConfig = pysparkConfig,
        reference = reference,
        region = region,
        scheduling = scheduling,
        sparkConfig = sparkConfig,
        sparksqlConfig = sparksqlConfig,
    )
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy