com.pulumi.gcp.dataproc.kotlin.outputs.ClusterClusterConfigMasterConfigAccelerator.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pulumi-gcp-kotlin Show documentation
Show all versions of pulumi-gcp-kotlin Show documentation
Build cloud applications and infrastructure by combining the safety and reliability of infrastructure as code with the power of the Kotlin programming language.
@file:Suppress("NAME_SHADOWING", "DEPRECATION")
package com.pulumi.gcp.dataproc.kotlin.outputs
import kotlin.Int
import kotlin.String
import kotlin.Suppress
/**
*
* @property acceleratorCount The number of the accelerator cards of this type exposed to this instance. Often restricted to one of `1`, `2`, `4`, or `8`.
* > The Cloud Dataproc API can return unintuitive error messages when using accelerators; even when you have defined an accelerator, Auto Zone Placement does not exclusively select
* zones that have that accelerator available. If you get a 400 error that the accelerator can't be found, this is a likely cause. Make sure you check [accelerator availability by zone](https://cloud.google.com/compute/docs/reference/rest/v1/acceleratorTypes/list)
* if you are trying to use accelerators in a given zone.
* - - -
* @property acceleratorType The short name of the accelerator type to expose to this instance. For example, `nvidia-tesla-k80`.
*/
public data class ClusterClusterConfigMasterConfigAccelerator(
public val acceleratorCount: Int,
public val acceleratorType: String,
) {
public companion object {
public fun toKotlin(javaType: com.pulumi.gcp.dataproc.outputs.ClusterClusterConfigMasterConfigAccelerator): ClusterClusterConfigMasterConfigAccelerator = ClusterClusterConfigMasterConfigAccelerator(
acceleratorCount = javaType.acceleratorCount(),
acceleratorType = javaType.acceleratorType(),
)
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy