com.pulumi.gcp.diagflow.kotlin.inputs.CxFlowNluSettingsArgs.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pulumi-gcp-kotlin Show documentation
Show all versions of pulumi-gcp-kotlin Show documentation
Build cloud applications and infrastructure by combining the safety and reliability of infrastructure as code with the power of the Kotlin programming language.
@file:Suppress("NAME_SHADOWING", "DEPRECATION")
package com.pulumi.gcp.diagflow.kotlin.inputs
import com.pulumi.core.Output
import com.pulumi.core.Output.of
import com.pulumi.gcp.diagflow.inputs.CxFlowNluSettingsArgs.builder
import com.pulumi.kotlin.ConvertibleToJava
import com.pulumi.kotlin.PulumiTagMarker
import kotlin.Double
import kotlin.String
import kotlin.Suppress
import kotlin.jvm.JvmName
/**
*
* @property classificationThreshold To filter out false positive results and still get variety in matched natural language inputs for your agent, you can tune the machine learning classification threshold.
* If the returned score value is less than the threshold value, then a no-match event will be triggered. The score values range from 0.0 (completely uncertain) to 1.0 (completely certain). If set to 0.0, the default of 0.3 is used.
* @property modelTrainingMode Indicates NLU model training mode.
* * MODEL_TRAINING_MODE_AUTOMATIC: NLU model training is automatically triggered when a flow gets modified. User can also manually trigger model training in this mode.
* * MODEL_TRAINING_MODE_MANUAL: User needs to manually trigger NLU model training. Best for large flows whose models take long time to train.
* Possible values are: `MODEL_TRAINING_MODE_AUTOMATIC`, `MODEL_TRAINING_MODE_MANUAL`.
* @property modelType Indicates the type of NLU model.
* * MODEL_TYPE_STANDARD: Use standard NLU model.
* * MODEL_TYPE_ADVANCED: Use advanced NLU model.
* Possible values are: `MODEL_TYPE_STANDARD`, `MODEL_TYPE_ADVANCED`.
*/
public data class CxFlowNluSettingsArgs(
public val classificationThreshold: Output? = null,
public val modelTrainingMode: Output? = null,
public val modelType: Output? = null,
) : ConvertibleToJava {
override fun toJava(): com.pulumi.gcp.diagflow.inputs.CxFlowNluSettingsArgs =
com.pulumi.gcp.diagflow.inputs.CxFlowNluSettingsArgs.builder()
.classificationThreshold(classificationThreshold?.applyValue({ args0 -> args0 }))
.modelTrainingMode(modelTrainingMode?.applyValue({ args0 -> args0 }))
.modelType(modelType?.applyValue({ args0 -> args0 })).build()
}
/**
* Builder for [CxFlowNluSettingsArgs].
*/
@PulumiTagMarker
public class CxFlowNluSettingsArgsBuilder internal constructor() {
private var classificationThreshold: Output? = null
private var modelTrainingMode: Output? = null
private var modelType: Output? = null
/**
* @param value To filter out false positive results and still get variety in matched natural language inputs for your agent, you can tune the machine learning classification threshold.
* If the returned score value is less than the threshold value, then a no-match event will be triggered. The score values range from 0.0 (completely uncertain) to 1.0 (completely certain). If set to 0.0, the default of 0.3 is used.
*/
@JvmName("ijqeelfgkckphfuj")
public suspend fun classificationThreshold(`value`: Output) {
this.classificationThreshold = value
}
/**
* @param value Indicates NLU model training mode.
* * MODEL_TRAINING_MODE_AUTOMATIC: NLU model training is automatically triggered when a flow gets modified. User can also manually trigger model training in this mode.
* * MODEL_TRAINING_MODE_MANUAL: User needs to manually trigger NLU model training. Best for large flows whose models take long time to train.
* Possible values are: `MODEL_TRAINING_MODE_AUTOMATIC`, `MODEL_TRAINING_MODE_MANUAL`.
*/
@JvmName("fhhthggxrlcekkcf")
public suspend fun modelTrainingMode(`value`: Output) {
this.modelTrainingMode = value
}
/**
* @param value Indicates the type of NLU model.
* * MODEL_TYPE_STANDARD: Use standard NLU model.
* * MODEL_TYPE_ADVANCED: Use advanced NLU model.
* Possible values are: `MODEL_TYPE_STANDARD`, `MODEL_TYPE_ADVANCED`.
*/
@JvmName("luwmyoitbhvcixqm")
public suspend fun modelType(`value`: Output) {
this.modelType = value
}
/**
* @param value To filter out false positive results and still get variety in matched natural language inputs for your agent, you can tune the machine learning classification threshold.
* If the returned score value is less than the threshold value, then a no-match event will be triggered. The score values range from 0.0 (completely uncertain) to 1.0 (completely certain). If set to 0.0, the default of 0.3 is used.
*/
@JvmName("igbktwstrcofijpi")
public suspend fun classificationThreshold(`value`: Double?) {
val toBeMapped = value
val mapped = toBeMapped?.let({ args0 -> of(args0) })
this.classificationThreshold = mapped
}
/**
* @param value Indicates NLU model training mode.
* * MODEL_TRAINING_MODE_AUTOMATIC: NLU model training is automatically triggered when a flow gets modified. User can also manually trigger model training in this mode.
* * MODEL_TRAINING_MODE_MANUAL: User needs to manually trigger NLU model training. Best for large flows whose models take long time to train.
* Possible values are: `MODEL_TRAINING_MODE_AUTOMATIC`, `MODEL_TRAINING_MODE_MANUAL`.
*/
@JvmName("fadtsvkkenrsholx")
public suspend fun modelTrainingMode(`value`: String?) {
val toBeMapped = value
val mapped = toBeMapped?.let({ args0 -> of(args0) })
this.modelTrainingMode = mapped
}
/**
* @param value Indicates the type of NLU model.
* * MODEL_TYPE_STANDARD: Use standard NLU model.
* * MODEL_TYPE_ADVANCED: Use advanced NLU model.
* Possible values are: `MODEL_TYPE_STANDARD`, `MODEL_TYPE_ADVANCED`.
*/
@JvmName("igfuhqxgqcndromj")
public suspend fun modelType(`value`: String?) {
val toBeMapped = value
val mapped = toBeMapped?.let({ args0 -> of(args0) })
this.modelType = mapped
}
internal fun build(): CxFlowNluSettingsArgs = CxFlowNluSettingsArgs(
classificationThreshold = classificationThreshold,
modelTrainingMode = modelTrainingMode,
modelType = modelType,
)
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy