com.pulumi.gcp.monitoring.kotlin.inputs.SloWindowsBasedSliMetricSumInRangeArgs.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pulumi-gcp-kotlin Show documentation
Show all versions of pulumi-gcp-kotlin Show documentation
Build cloud applications and infrastructure by combining the safety and reliability of infrastructure as code with the power of the Kotlin programming language.
@file:Suppress("NAME_SHADOWING", "DEPRECATION")
package com.pulumi.gcp.monitoring.kotlin.inputs
import com.pulumi.core.Output
import com.pulumi.core.Output.of
import com.pulumi.gcp.monitoring.inputs.SloWindowsBasedSliMetricSumInRangeArgs.builder
import com.pulumi.kotlin.ConvertibleToJava
import com.pulumi.kotlin.PulumiNullFieldException
import com.pulumi.kotlin.PulumiTagMarker
import com.pulumi.kotlin.applySuspend
import kotlin.String
import kotlin.Suppress
import kotlin.Unit
import kotlin.jvm.JvmName
/**
*
* @property range Range of numerical values. The computed good_service
* will be the count of values x in the Distribution such
* that range.min <= x <= range.max. inclusive of min and
* max. Open ranges can be defined by setting
* just one of min or max. Summed value `X` should satisfy
* `range.min <= X <= range.max` for a good window.
* Structure is documented below.
* @property timeSeries A [monitoring filter](https://cloud.google.com/monitoring/api/v3/filters)
* specifying the TimeSeries to use for evaluating window
* quality. The provided TimeSeries must have
* ValueType = INT64 or ValueType = DOUBLE and
* MetricKind = GAUGE.
* Summed value `X` should satisfy
* `range.min <= X <= range.max` for a good window.
*/
public data class SloWindowsBasedSliMetricSumInRangeArgs(
public val range: Output,
public val timeSeries: Output,
) : ConvertibleToJava {
override fun toJava(): com.pulumi.gcp.monitoring.inputs.SloWindowsBasedSliMetricSumInRangeArgs =
com.pulumi.gcp.monitoring.inputs.SloWindowsBasedSliMetricSumInRangeArgs.builder()
.range(range.applyValue({ args0 -> args0.let({ args0 -> args0.toJava() }) }))
.timeSeries(timeSeries.applyValue({ args0 -> args0 })).build()
}
/**
* Builder for [SloWindowsBasedSliMetricSumInRangeArgs].
*/
@PulumiTagMarker
public class SloWindowsBasedSliMetricSumInRangeArgsBuilder internal constructor() {
private var range: Output? = null
private var timeSeries: Output? = null
/**
* @param value Range of numerical values. The computed good_service
* will be the count of values x in the Distribution such
* that range.min <= x <= range.max. inclusive of min and
* max. Open ranges can be defined by setting
* just one of min or max. Summed value `X` should satisfy
* `range.min <= X <= range.max` for a good window.
* Structure is documented below.
*/
@JvmName("ddttstyhdmuqtrlu")
public suspend fun range(`value`: Output) {
this.range = value
}
/**
* @param value A [monitoring filter](https://cloud.google.com/monitoring/api/v3/filters)
* specifying the TimeSeries to use for evaluating window
* quality. The provided TimeSeries must have
* ValueType = INT64 or ValueType = DOUBLE and
* MetricKind = GAUGE.
* Summed value `X` should satisfy
* `range.min <= X <= range.max` for a good window.
*/
@JvmName("pxuhweybhyoahlap")
public suspend fun timeSeries(`value`: Output) {
this.timeSeries = value
}
/**
* @param value Range of numerical values. The computed good_service
* will be the count of values x in the Distribution such
* that range.min <= x <= range.max. inclusive of min and
* max. Open ranges can be defined by setting
* just one of min or max. Summed value `X` should satisfy
* `range.min <= X <= range.max` for a good window.
* Structure is documented below.
*/
@JvmName("ihmpfnknwicvsdxs")
public suspend fun range(`value`: SloWindowsBasedSliMetricSumInRangeRangeArgs) {
val toBeMapped = value
val mapped = toBeMapped.let({ args0 -> of(args0) })
this.range = mapped
}
/**
* @param argument Range of numerical values. The computed good_service
* will be the count of values x in the Distribution such
* that range.min <= x <= range.max. inclusive of min and
* max. Open ranges can be defined by setting
* just one of min or max. Summed value `X` should satisfy
* `range.min <= X <= range.max` for a good window.
* Structure is documented below.
*/
@JvmName("jwwmmnewdlkmpklg")
public suspend fun range(argument: suspend SloWindowsBasedSliMetricSumInRangeRangeArgsBuilder.() -> Unit) {
val toBeMapped = SloWindowsBasedSliMetricSumInRangeRangeArgsBuilder().applySuspend {
argument()
}.build()
val mapped = of(toBeMapped)
this.range = mapped
}
/**
* @param value A [monitoring filter](https://cloud.google.com/monitoring/api/v3/filters)
* specifying the TimeSeries to use for evaluating window
* quality. The provided TimeSeries must have
* ValueType = INT64 or ValueType = DOUBLE and
* MetricKind = GAUGE.
* Summed value `X` should satisfy
* `range.min <= X <= range.max` for a good window.
*/
@JvmName("ruppkjrbrrtbihgc")
public suspend fun timeSeries(`value`: String) {
val toBeMapped = value
val mapped = toBeMapped.let({ args0 -> of(args0) })
this.timeSeries = mapped
}
internal fun build(): SloWindowsBasedSliMetricSumInRangeArgs =
SloWindowsBasedSliMetricSumInRangeArgs(
range = range ?: throw PulumiNullFieldException("range"),
timeSeries = timeSeries ?: throw PulumiNullFieldException("timeSeries"),
)
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy