com.pulumi.gcp.vertex.kotlin.AiDatasetArgs.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pulumi-gcp-kotlin Show documentation
Show all versions of pulumi-gcp-kotlin Show documentation
Build cloud applications and infrastructure by combining the safety and reliability of infrastructure as code with the power of the Kotlin programming language.
@file:Suppress("NAME_SHADOWING", "DEPRECATION")
package com.pulumi.gcp.vertex.kotlin
import com.pulumi.core.Output
import com.pulumi.core.Output.of
import com.pulumi.gcp.vertex.AiDatasetArgs.builder
import com.pulumi.gcp.vertex.kotlin.inputs.AiDatasetEncryptionSpecArgs
import com.pulumi.gcp.vertex.kotlin.inputs.AiDatasetEncryptionSpecArgsBuilder
import com.pulumi.kotlin.ConvertibleToJava
import com.pulumi.kotlin.PulumiTagMarker
import com.pulumi.kotlin.applySuspend
import kotlin.Pair
import kotlin.String
import kotlin.Suppress
import kotlin.Unit
import kotlin.collections.Map
import kotlin.jvm.JvmName
/**
* A collection of DataItems and Annotations on them.
* To get more information about Dataset, see:
* * [API documentation](https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.datasets)
* * How-to Guides
* * [Official Documentation](https://cloud.google.com/vertex-ai/docs)
* ## Example Usage
* ### Vertex Ai Dataset
*
* ```typescript
* import * as pulumi from "@pulumi/pulumi";
* import * as gcp from "@pulumi/gcp";
* const dataset = new gcp.vertex.AiDataset("dataset", {
* displayName: "terraform",
* metadataSchemaUri: "gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml",
* region: "us-central1",
* labels: {
* env: "test",
* },
* });
* ```
* ```python
* import pulumi
* import pulumi_gcp as gcp
* dataset = gcp.vertex.AiDataset("dataset",
* display_name="terraform",
* metadata_schema_uri="gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml",
* region="us-central1",
* labels={
* "env": "test",
* })
* ```
* ```csharp
* using System.Collections.Generic;
* using System.Linq;
* using Pulumi;
* using Gcp = Pulumi.Gcp;
* return await Deployment.RunAsync(() =>
* {
* var dataset = new Gcp.Vertex.AiDataset("dataset", new()
* {
* DisplayName = "terraform",
* MetadataSchemaUri = "gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml",
* Region = "us-central1",
* Labels =
* {
* { "env", "test" },
* },
* });
* });
* ```
* ```go
* package main
* import (
* "github.com/pulumi/pulumi-gcp/sdk/v7/go/gcp/vertex"
* "github.com/pulumi/pulumi/sdk/v3/go/pulumi"
* )
* func main() {
* pulumi.Run(func(ctx *pulumi.Context) error {
* _, err := vertex.NewAiDataset(ctx, "dataset", &vertex.AiDatasetArgs{
* DisplayName: pulumi.String("terraform"),
* MetadataSchemaUri: pulumi.String("gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml"),
* Region: pulumi.String("us-central1"),
* Labels: pulumi.StringMap{
* "env": pulumi.String("test"),
* },
* })
* if err != nil {
* return err
* }
* return nil
* })
* }
* ```
* ```java
* package generated_program;
* import com.pulumi.Context;
* import com.pulumi.Pulumi;
* import com.pulumi.core.Output;
* import com.pulumi.gcp.vertex.AiDataset;
* import com.pulumi.gcp.vertex.AiDatasetArgs;
* import java.util.List;
* import java.util.ArrayList;
* import java.util.Map;
* import java.io.File;
* import java.nio.file.Files;
* import java.nio.file.Paths;
* public class App {
* public static void main(String[] args) {
* Pulumi.run(App::stack);
* }
* public static void stack(Context ctx) {
* var dataset = new AiDataset("dataset", AiDatasetArgs.builder()
* .displayName("terraform")
* .metadataSchemaUri("gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml")
* .region("us-central1")
* .labels(Map.of("env", "test"))
* .build());
* }
* }
* ```
* ```yaml
* resources:
* dataset:
* type: gcp:vertex:AiDataset
* properties:
* displayName: terraform
* metadataSchemaUri: gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml
* region: us-central1
* labels:
* env: test
* ```
*
* ## Import
* This resource does not support import.
* @property displayName The user-defined name of the Dataset. The name can be up to 128 characters long and can be consist of any UTF-8 characters.
* @property encryptionSpec Customer-managed encryption key spec for a Dataset. If set, this Dataset and all sub-resources of this Dataset will be secured by this key.
* Structure is documented below.
* @property labels A set of key/value label pairs to assign to this Workflow.
* **Note**: This field is non-authoritative, and will only manage the labels present in your configuration.
* Please refer to the field `effective_labels` for all of the labels present on the resource.
* @property metadataSchemaUri Points to a YAML file stored on Google Cloud Storage describing additional information about the Dataset. The schema is defined as an OpenAPI 3.0.2 Schema Object. The schema files that can be used here are found in gs://google-cloud-aiplatform/schema/dataset/metadata/.
* - - -
* @property project The ID of the project in which the resource belongs.
* If it is not provided, the provider project is used.
* @property region The region of the dataset. eg us-central1
*/
public data class AiDatasetArgs(
public val displayName: Output? = null,
public val encryptionSpec: Output? = null,
public val labels: Output
© 2015 - 2024 Weber Informatics LLC | Privacy Policy