com.pulumi.gcp.vertex.kotlin.inputs.AiIndexMetadataConfigArgs.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pulumi-gcp-kotlin Show documentation
Show all versions of pulumi-gcp-kotlin Show documentation
Build cloud applications and infrastructure by combining the safety and reliability of infrastructure as code with the power of the Kotlin programming language.
@file:Suppress("NAME_SHADOWING", "DEPRECATION")
package com.pulumi.gcp.vertex.kotlin.inputs
import com.pulumi.core.Output
import com.pulumi.core.Output.of
import com.pulumi.gcp.vertex.inputs.AiIndexMetadataConfigArgs.builder
import com.pulumi.kotlin.ConvertibleToJava
import com.pulumi.kotlin.PulumiNullFieldException
import com.pulumi.kotlin.PulumiTagMarker
import com.pulumi.kotlin.applySuspend
import kotlin.Int
import kotlin.String
import kotlin.Suppress
import kotlin.Unit
import kotlin.jvm.JvmName
/**
*
* @property algorithmConfig The configuration with regard to the algorithms used for efficient search.
* Structure is documented below.
* @property approximateNeighborsCount The default number of neighbors to find via approximate search before exact reordering is
* performed. Exact reordering is a procedure where results returned by an
* approximate search algorithm are reordered via a more expensive distance computation.
* Required if tree-AH algorithm is used.
* @property dimensions The number of dimensions of the input vectors.
* @property distanceMeasureType The distance measure used in nearest neighbor search. The value must be one of the followings:
* * SQUARED_L2_DISTANCE: Euclidean (L_2) Distance
* * L1_DISTANCE: Manhattan (L_1) Distance
* * COSINE_DISTANCE: Cosine Distance. Defined as 1 - cosine similarity.
* * DOT_PRODUCT_DISTANCE: Dot Product Distance. Defined as a negative of the dot product
* @property featureNormType Type of normalization to be carried out on each vector. The value must be one of the followings:
* * UNIT_L2_NORM: Unit L2 normalization type
* * NONE: No normalization type is specified.
* @property shardSize Index data is split into equal parts to be processed. These are called "shards".
* The shard size must be specified when creating an index. The value must be one of the followings:
* * SHARD_SIZE_SMALL: Small (2GB)
* * SHARD_SIZE_MEDIUM: Medium (20GB)
* * SHARD_SIZE_LARGE: Large (50GB)
*/
public data class AiIndexMetadataConfigArgs(
public val algorithmConfig: Output? = null,
public val approximateNeighborsCount: Output? = null,
public val dimensions: Output,
public val distanceMeasureType: Output? = null,
public val featureNormType: Output? = null,
public val shardSize: Output? = null,
) : ConvertibleToJava {
override fun toJava(): com.pulumi.gcp.vertex.inputs.AiIndexMetadataConfigArgs =
com.pulumi.gcp.vertex.inputs.AiIndexMetadataConfigArgs.builder()
.algorithmConfig(algorithmConfig?.applyValue({ args0 -> args0.let({ args0 -> args0.toJava() }) }))
.approximateNeighborsCount(approximateNeighborsCount?.applyValue({ args0 -> args0 }))
.dimensions(dimensions.applyValue({ args0 -> args0 }))
.distanceMeasureType(distanceMeasureType?.applyValue({ args0 -> args0 }))
.featureNormType(featureNormType?.applyValue({ args0 -> args0 }))
.shardSize(shardSize?.applyValue({ args0 -> args0 })).build()
}
/**
* Builder for [AiIndexMetadataConfigArgs].
*/
@PulumiTagMarker
public class AiIndexMetadataConfigArgsBuilder internal constructor() {
private var algorithmConfig: Output? = null
private var approximateNeighborsCount: Output? = null
private var dimensions: Output? = null
private var distanceMeasureType: Output? = null
private var featureNormType: Output? = null
private var shardSize: Output? = null
/**
* @param value The configuration with regard to the algorithms used for efficient search.
* Structure is documented below.
*/
@JvmName("hahetuehchcjwlrm")
public suspend fun algorithmConfig(`value`: Output) {
this.algorithmConfig = value
}
/**
* @param value The default number of neighbors to find via approximate search before exact reordering is
* performed. Exact reordering is a procedure where results returned by an
* approximate search algorithm are reordered via a more expensive distance computation.
* Required if tree-AH algorithm is used.
*/
@JvmName("kjgwxacnkoofkqyj")
public suspend fun approximateNeighborsCount(`value`: Output) {
this.approximateNeighborsCount = value
}
/**
* @param value The number of dimensions of the input vectors.
*/
@JvmName("mfxpkwipbncanxkm")
public suspend fun dimensions(`value`: Output) {
this.dimensions = value
}
/**
* @param value The distance measure used in nearest neighbor search. The value must be one of the followings:
* * SQUARED_L2_DISTANCE: Euclidean (L_2) Distance
* * L1_DISTANCE: Manhattan (L_1) Distance
* * COSINE_DISTANCE: Cosine Distance. Defined as 1 - cosine similarity.
* * DOT_PRODUCT_DISTANCE: Dot Product Distance. Defined as a negative of the dot product
*/
@JvmName("atfffuoyitjlcles")
public suspend fun distanceMeasureType(`value`: Output) {
this.distanceMeasureType = value
}
/**
* @param value Type of normalization to be carried out on each vector. The value must be one of the followings:
* * UNIT_L2_NORM: Unit L2 normalization type
* * NONE: No normalization type is specified.
*/
@JvmName("nmcoapbqkxvffptx")
public suspend fun featureNormType(`value`: Output) {
this.featureNormType = value
}
/**
* @param value Index data is split into equal parts to be processed. These are called "shards".
* The shard size must be specified when creating an index. The value must be one of the followings:
* * SHARD_SIZE_SMALL: Small (2GB)
* * SHARD_SIZE_MEDIUM: Medium (20GB)
* * SHARD_SIZE_LARGE: Large (50GB)
*/
@JvmName("xdfplvvtrdstsdob")
public suspend fun shardSize(`value`: Output) {
this.shardSize = value
}
/**
* @param value The configuration with regard to the algorithms used for efficient search.
* Structure is documented below.
*/
@JvmName("ykapvpkvjkuhinmi")
public suspend fun algorithmConfig(`value`: AiIndexMetadataConfigAlgorithmConfigArgs?) {
val toBeMapped = value
val mapped = toBeMapped?.let({ args0 -> of(args0) })
this.algorithmConfig = mapped
}
/**
* @param argument The configuration with regard to the algorithms used for efficient search.
* Structure is documented below.
*/
@JvmName("dsxcrnpuoisaliuf")
public suspend fun algorithmConfig(argument: suspend AiIndexMetadataConfigAlgorithmConfigArgsBuilder.() -> Unit) {
val toBeMapped = AiIndexMetadataConfigAlgorithmConfigArgsBuilder().applySuspend {
argument()
}.build()
val mapped = of(toBeMapped)
this.algorithmConfig = mapped
}
/**
* @param value The default number of neighbors to find via approximate search before exact reordering is
* performed. Exact reordering is a procedure where results returned by an
* approximate search algorithm are reordered via a more expensive distance computation.
* Required if tree-AH algorithm is used.
*/
@JvmName("irslymhelojjqyrg")
public suspend fun approximateNeighborsCount(`value`: Int?) {
val toBeMapped = value
val mapped = toBeMapped?.let({ args0 -> of(args0) })
this.approximateNeighborsCount = mapped
}
/**
* @param value The number of dimensions of the input vectors.
*/
@JvmName("iwylguxaknbabbrh")
public suspend fun dimensions(`value`: Int) {
val toBeMapped = value
val mapped = toBeMapped.let({ args0 -> of(args0) })
this.dimensions = mapped
}
/**
* @param value The distance measure used in nearest neighbor search. The value must be one of the followings:
* * SQUARED_L2_DISTANCE: Euclidean (L_2) Distance
* * L1_DISTANCE: Manhattan (L_1) Distance
* * COSINE_DISTANCE: Cosine Distance. Defined as 1 - cosine similarity.
* * DOT_PRODUCT_DISTANCE: Dot Product Distance. Defined as a negative of the dot product
*/
@JvmName("bjocodywggrqtfmg")
public suspend fun distanceMeasureType(`value`: String?) {
val toBeMapped = value
val mapped = toBeMapped?.let({ args0 -> of(args0) })
this.distanceMeasureType = mapped
}
/**
* @param value Type of normalization to be carried out on each vector. The value must be one of the followings:
* * UNIT_L2_NORM: Unit L2 normalization type
* * NONE: No normalization type is specified.
*/
@JvmName("eipallswbmavkqxn")
public suspend fun featureNormType(`value`: String?) {
val toBeMapped = value
val mapped = toBeMapped?.let({ args0 -> of(args0) })
this.featureNormType = mapped
}
/**
* @param value Index data is split into equal parts to be processed. These are called "shards".
* The shard size must be specified when creating an index. The value must be one of the followings:
* * SHARD_SIZE_SMALL: Small (2GB)
* * SHARD_SIZE_MEDIUM: Medium (20GB)
* * SHARD_SIZE_LARGE: Large (50GB)
*/
@JvmName("qocvotaewjyqvhod")
public suspend fun shardSize(`value`: String?) {
val toBeMapped = value
val mapped = toBeMapped?.let({ args0 -> of(args0) })
this.shardSize = mapped
}
internal fun build(): AiIndexMetadataConfigArgs = AiIndexMetadataConfigArgs(
algorithmConfig = algorithmConfig,
approximateNeighborsCount = approximateNeighborsCount,
dimensions = dimensions ?: throw PulumiNullFieldException("dimensions"),
distanceMeasureType = distanceMeasureType,
featureNormType = featureNormType,
shardSize = shardSize,
)
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy