Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.pulumi.gcp.vertex.kotlin.AiTensorboardArgs.kt Maven / Gradle / Ivy
@file:Suppress("NAME_SHADOWING", "DEPRECATION")
package com.pulumi.gcp.vertex.kotlin
import com.pulumi.core.Output
import com.pulumi.core.Output.of
import com.pulumi.gcp.vertex.AiTensorboardArgs.builder
import com.pulumi.gcp.vertex.kotlin.inputs.AiTensorboardEncryptionSpecArgs
import com.pulumi.gcp.vertex.kotlin.inputs.AiTensorboardEncryptionSpecArgsBuilder
import com.pulumi.kotlin.ConvertibleToJava
import com.pulumi.kotlin.PulumiTagMarker
import com.pulumi.kotlin.applySuspend
import kotlin.Pair
import kotlin.String
import kotlin.Suppress
import kotlin.Unit
import kotlin.collections.Map
import kotlin.jvm.JvmName
/**
* Tensorboard is a physical database that stores users' training metrics. A default Tensorboard is provided in each region of a GCP project. If needed users can also create extra Tensorboards in their projects.
* To get more information about Tensorboard, see:
* * [API documentation](https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.tensorboards)
* * How-to Guides
* * [Official Documentation](https://cloud.google.com/vertex-ai/docs)
* ## Example Usage
* ### Vertex Ai Tensorboard
*
* ```typescript
* import * as pulumi from "@pulumi/pulumi";
* import * as gcp from "@pulumi/gcp";
* const tensorboard = new gcp.vertex.AiTensorboard("tensorboard", {
* displayName: "terraform",
* description: "sample description",
* labels: {
* key1: "value1",
* key2: "value2",
* },
* region: "us-central1",
* });
* ```
* ```python
* import pulumi
* import pulumi_gcp as gcp
* tensorboard = gcp.vertex.AiTensorboard("tensorboard",
* display_name="terraform",
* description="sample description",
* labels={
* "key1": "value1",
* "key2": "value2",
* },
* region="us-central1")
* ```
* ```csharp
* using System.Collections.Generic;
* using System.Linq;
* using Pulumi;
* using Gcp = Pulumi.Gcp;
* return await Deployment.RunAsync(() =>
* {
* var tensorboard = new Gcp.Vertex.AiTensorboard("tensorboard", new()
* {
* DisplayName = "terraform",
* Description = "sample description",
* Labels =
* {
* { "key1", "value1" },
* { "key2", "value2" },
* },
* Region = "us-central1",
* });
* });
* ```
* ```go
* package main
* import (
* "github.com/pulumi/pulumi-gcp/sdk/v7/go/gcp/vertex"
* "github.com/pulumi/pulumi/sdk/v3/go/pulumi"
* )
* func main() {
* pulumi.Run(func(ctx *pulumi.Context) error {
* _, err := vertex.NewAiTensorboard(ctx, "tensorboard", &vertex.AiTensorboardArgs{
* DisplayName: pulumi.String("terraform"),
* Description: pulumi.String("sample description"),
* Labels: pulumi.StringMap{
* "key1": pulumi.String("value1"),
* "key2": pulumi.String("value2"),
* },
* Region: pulumi.String("us-central1"),
* })
* if err != nil {
* return err
* }
* return nil
* })
* }
* ```
* ```java
* package generated_program;
* import com.pulumi.Context;
* import com.pulumi.Pulumi;
* import com.pulumi.core.Output;
* import com.pulumi.gcp.vertex.AiTensorboard;
* import com.pulumi.gcp.vertex.AiTensorboardArgs;
* import java.util.List;
* import java.util.ArrayList;
* import java.util.Map;
* import java.io.File;
* import java.nio.file.Files;
* import java.nio.file.Paths;
* public class App {
* public static void main(String[] args) {
* Pulumi.run(App::stack);
* }
* public static void stack(Context ctx) {
* var tensorboard = new AiTensorboard("tensorboard", AiTensorboardArgs.builder()
* .displayName("terraform")
* .description("sample description")
* .labels(Map.ofEntries(
* Map.entry("key1", "value1"),
* Map.entry("key2", "value2")
* ))
* .region("us-central1")
* .build());
* }
* }
* ```
* ```yaml
* resources:
* tensorboard:
* type: gcp:vertex:AiTensorboard
* properties:
* displayName: terraform
* description: sample description
* labels:
* key1: value1
* key2: value2
* region: us-central1
* ```
*
* ### Vertex Ai Tensorboard Full
*
* ```typescript
* import * as pulumi from "@pulumi/pulumi";
* import * as gcp from "@pulumi/gcp";
* const project = gcp.organizations.getProject({});
* const cryptoKey = new gcp.kms.CryptoKeyIAMMember("crypto_key", {
* cryptoKeyId: "kms-name",
* role: "roles/cloudkms.cryptoKeyEncrypterDecrypter",
* member: project.then(project => `serviceAccount:service-${project.number}@gcp-sa-aiplatform.iam.gserviceaccount.com`),
* });
* const tensorboard = new gcp.vertex.AiTensorboard("tensorboard", {
* displayName: "terraform",
* description: "sample description",
* labels: {
* key1: "value1",
* key2: "value2",
* },
* region: "us-central1",
* encryptionSpec: {
* kmsKeyName: "kms-name",
* },
* }, {
* dependsOn: [cryptoKey],
* });
* ```
* ```python
* import pulumi
* import pulumi_gcp as gcp
* project = gcp.organizations.get_project()
* crypto_key = gcp.kms.CryptoKeyIAMMember("crypto_key",
* crypto_key_id="kms-name",
* role="roles/cloudkms.cryptoKeyEncrypterDecrypter",
* member=f"serviceAccount:service-{project.number}@gcp-sa-aiplatform.iam.gserviceaccount.com")
* tensorboard = gcp.vertex.AiTensorboard("tensorboard",
* display_name="terraform",
* description="sample description",
* labels={
* "key1": "value1",
* "key2": "value2",
* },
* region="us-central1",
* encryption_spec={
* "kms_key_name": "kms-name",
* },
* opts = pulumi.ResourceOptions(depends_on=[crypto_key]))
* ```
* ```csharp
* using System.Collections.Generic;
* using System.Linq;
* using Pulumi;
* using Gcp = Pulumi.Gcp;
* return await Deployment.RunAsync(() =>
* {
* var project = Gcp.Organizations.GetProject.Invoke();
* var cryptoKey = new Gcp.Kms.CryptoKeyIAMMember("crypto_key", new()
* {
* CryptoKeyId = "kms-name",
* Role = "roles/cloudkms.cryptoKeyEncrypterDecrypter",
* Member = $"serviceAccount:service-{project.Apply(getProjectResult => getProjectResult.Number)}@gcp-sa-aiplatform.iam.gserviceaccount.com",
* });
* var tensorboard = new Gcp.Vertex.AiTensorboard("tensorboard", new()
* {
* DisplayName = "terraform",
* Description = "sample description",
* Labels =
* {
* { "key1", "value1" },
* { "key2", "value2" },
* },
* Region = "us-central1",
* EncryptionSpec = new Gcp.Vertex.Inputs.AiTensorboardEncryptionSpecArgs
* {
* KmsKeyName = "kms-name",
* },
* }, new CustomResourceOptions
* {
* DependsOn =
* {
* cryptoKey,
* },
* });
* });
* ```
* ```go
* package main
* import (
* "fmt"
* "github.com/pulumi/pulumi-gcp/sdk/v7/go/gcp/kms"
* "github.com/pulumi/pulumi-gcp/sdk/v7/go/gcp/organizations"
* "github.com/pulumi/pulumi-gcp/sdk/v7/go/gcp/vertex"
* "github.com/pulumi/pulumi/sdk/v3/go/pulumi"
* )
* func main() {
* pulumi.Run(func(ctx *pulumi.Context) error {
* project, err := organizations.LookupProject(ctx, nil, nil)
* if err != nil {
* return err
* }
* cryptoKey, err := kms.NewCryptoKeyIAMMember(ctx, "crypto_key", &kms.CryptoKeyIAMMemberArgs{
* CryptoKeyId: pulumi.String("kms-name"),
* Role: pulumi.String("roles/cloudkms.cryptoKeyEncrypterDecrypter"),
* Member: pulumi.Sprintf("serviceAccount:service-%[email protected] ", project.Number),
* })
* if err != nil {
* return err
* }
* _, err = vertex.NewAiTensorboard(ctx, "tensorboard", &vertex.AiTensorboardArgs{
* DisplayName: pulumi.String("terraform"),
* Description: pulumi.String("sample description"),
* Labels: pulumi.StringMap{
* "key1": pulumi.String("value1"),
* "key2": pulumi.String("value2"),
* },
* Region: pulumi.String("us-central1"),
* EncryptionSpec: &vertex.AiTensorboardEncryptionSpecArgs{
* KmsKeyName: pulumi.String("kms-name"),
* },
* }, pulumi.DependsOn([]pulumi.Resource{
* cryptoKey,
* }))
* if err != nil {
* return err
* }
* return nil
* })
* }
* ```
* ```java
* package generated_program;
* import com.pulumi.Context;
* import com.pulumi.Pulumi;
* import com.pulumi.core.Output;
* import com.pulumi.gcp.organizations.OrganizationsFunctions;
* import com.pulumi.gcp.organizations.inputs.GetProjectArgs;
* import com.pulumi.gcp.kms.CryptoKeyIAMMember;
* import com.pulumi.gcp.kms.CryptoKeyIAMMemberArgs;
* import com.pulumi.gcp.vertex.AiTensorboard;
* import com.pulumi.gcp.vertex.AiTensorboardArgs;
* import com.pulumi.gcp.vertex.inputs.AiTensorboardEncryptionSpecArgs;
* import com.pulumi.resources.CustomResourceOptions;
* import java.util.List;
* import java.util.ArrayList;
* import java.util.Map;
* import java.io.File;
* import java.nio.file.Files;
* import java.nio.file.Paths;
* public class App {
* public static void main(String[] args) {
* Pulumi.run(App::stack);
* }
* public static void stack(Context ctx) {
* final var project = OrganizationsFunctions.getProject();
* var cryptoKey = new CryptoKeyIAMMember("cryptoKey", CryptoKeyIAMMemberArgs.builder()
* .cryptoKeyId("kms-name")
* .role("roles/cloudkms.cryptoKeyEncrypterDecrypter")
* .member(String.format("serviceAccount:service-%[email protected] ", project.applyValue(getProjectResult -> getProjectResult.number())))
* .build());
* var tensorboard = new AiTensorboard("tensorboard", AiTensorboardArgs.builder()
* .displayName("terraform")
* .description("sample description")
* .labels(Map.ofEntries(
* Map.entry("key1", "value1"),
* Map.entry("key2", "value2")
* ))
* .region("us-central1")
* .encryptionSpec(AiTensorboardEncryptionSpecArgs.builder()
* .kmsKeyName("kms-name")
* .build())
* .build(), CustomResourceOptions.builder()
* .dependsOn(cryptoKey)
* .build());
* }
* }
* ```
* ```yaml
* resources:
* tensorboard:
* type: gcp:vertex:AiTensorboard
* properties:
* displayName: terraform
* description: sample description
* labels:
* key1: value1
* key2: value2
* region: us-central1
* encryptionSpec:
* kmsKeyName: kms-name
* options:
* dependson:
* - ${cryptoKey}
* cryptoKey:
* type: gcp:kms:CryptoKeyIAMMember
* name: crypto_key
* properties:
* cryptoKeyId: kms-name
* role: roles/cloudkms.cryptoKeyEncrypterDecrypter
* member: serviceAccount:service-${project.number}@gcp-sa-aiplatform.iam.gserviceaccount.com
* variables:
* project:
* fn::invoke:
* Function: gcp:organizations:getProject
* Arguments: {}
* ```
*
* ## Import
* Tensorboard can be imported using any of these accepted formats:
* * `projects/{{project}}/locations/{{region}}/tensorboards/{{name}}`
* * `{{project}}/{{region}}/{{name}}`
* * `{{region}}/{{name}}`
* * `{{name}}`
* When using the `pulumi import` command, Tensorboard can be imported using one of the formats above. For example:
* ```sh
* $ pulumi import gcp:vertex/aiTensorboard:AiTensorboard default projects/{{project}}/locations/{{region}}/tensorboards/{{name}}
* ```
* ```sh
* $ pulumi import gcp:vertex/aiTensorboard:AiTensorboard default {{project}}/{{region}}/{{name}}
* ```
* ```sh
* $ pulumi import gcp:vertex/aiTensorboard:AiTensorboard default {{region}}/{{name}}
* ```
* ```sh
* $ pulumi import gcp:vertex/aiTensorboard:AiTensorboard default {{name}}
* ```
* @property description Description of this Tensorboard.
* @property displayName User provided name of this Tensorboard.
* - - -
* @property encryptionSpec Customer-managed encryption key spec for a Tensorboard. If set, this Tensorboard and all sub-resources of this Tensorboard will be secured by this key.
* Structure is documented below.
* @property labels The labels with user-defined metadata to organize your Tensorboards.
* **Note**: This field is non-authoritative, and will only manage the labels present in your configuration.
* Please refer to the field `effective_labels` for all of the labels present on the resource.
* @property project The ID of the project in which the resource belongs.
* If it is not provided, the provider project is used.
* @property region The region of the tensorboard. eg us-central1
*/
public data class AiTensorboardArgs(
public val description: Output? = null,
public val displayName: Output? = null,
public val encryptionSpec: Output? = null,
public val labels: Output>? = null,
public val project: Output? = null,
public val region: Output? = null,
) : ConvertibleToJava {
override fun toJava(): com.pulumi.gcp.vertex.AiTensorboardArgs =
com.pulumi.gcp.vertex.AiTensorboardArgs.builder()
.description(description?.applyValue({ args0 -> args0 }))
.displayName(displayName?.applyValue({ args0 -> args0 }))
.encryptionSpec(encryptionSpec?.applyValue({ args0 -> args0.let({ args0 -> args0.toJava() }) }))
.labels(labels?.applyValue({ args0 -> args0.map({ args0 -> args0.key.to(args0.value) }).toMap() }))
.project(project?.applyValue({ args0 -> args0 }))
.region(region?.applyValue({ args0 -> args0 })).build()
}
/**
* Builder for [AiTensorboardArgs].
*/
@PulumiTagMarker
public class AiTensorboardArgsBuilder internal constructor() {
private var description: Output? = null
private var displayName: Output? = null
private var encryptionSpec: Output? = null
private var labels: Output>? = null
private var project: Output? = null
private var region: Output? = null
/**
* @param value Description of this Tensorboard.
*/
@JvmName("dsnulencubpunhbp")
public suspend fun description(`value`: Output) {
this.description = value
}
/**
* @param value User provided name of this Tensorboard.
* - - -
*/
@JvmName("mvpkwwumnghuftcv")
public suspend fun displayName(`value`: Output) {
this.displayName = value
}
/**
* @param value Customer-managed encryption key spec for a Tensorboard. If set, this Tensorboard and all sub-resources of this Tensorboard will be secured by this key.
* Structure is documented below.
*/
@JvmName("alcnxctgfpubloir")
public suspend fun encryptionSpec(`value`: Output) {
this.encryptionSpec = value
}
/**
* @param value The labels with user-defined metadata to organize your Tensorboards.
* **Note**: This field is non-authoritative, and will only manage the labels present in your configuration.
* Please refer to the field `effective_labels` for all of the labels present on the resource.
*/
@JvmName("obxjukfsfdarlnya")
public suspend fun labels(`value`: Output>) {
this.labels = value
}
/**
* @param value The ID of the project in which the resource belongs.
* If it is not provided, the provider project is used.
*/
@JvmName("sggmskfxukohlvfb")
public suspend fun project(`value`: Output) {
this.project = value
}
/**
* @param value The region of the tensorboard. eg us-central1
*/
@JvmName("mlgvfnevbvdhwypu")
public suspend fun region(`value`: Output) {
this.region = value
}
/**
* @param value Description of this Tensorboard.
*/
@JvmName("oeoemfoyutehsqar")
public suspend fun description(`value`: String?) {
val toBeMapped = value
val mapped = toBeMapped?.let({ args0 -> of(args0) })
this.description = mapped
}
/**
* @param value User provided name of this Tensorboard.
* - - -
*/
@JvmName("vagttpkgtjunekvt")
public suspend fun displayName(`value`: String?) {
val toBeMapped = value
val mapped = toBeMapped?.let({ args0 -> of(args0) })
this.displayName = mapped
}
/**
* @param value Customer-managed encryption key spec for a Tensorboard. If set, this Tensorboard and all sub-resources of this Tensorboard will be secured by this key.
* Structure is documented below.
*/
@JvmName("wyrmydehfunyvnoj")
public suspend fun encryptionSpec(`value`: AiTensorboardEncryptionSpecArgs?) {
val toBeMapped = value
val mapped = toBeMapped?.let({ args0 -> of(args0) })
this.encryptionSpec = mapped
}
/**
* @param argument Customer-managed encryption key spec for a Tensorboard. If set, this Tensorboard and all sub-resources of this Tensorboard will be secured by this key.
* Structure is documented below.
*/
@JvmName("yjbroxynubupclnc")
public suspend fun encryptionSpec(argument: suspend AiTensorboardEncryptionSpecArgsBuilder.() -> Unit) {
val toBeMapped = AiTensorboardEncryptionSpecArgsBuilder().applySuspend { argument() }.build()
val mapped = of(toBeMapped)
this.encryptionSpec = mapped
}
/**
* @param value The labels with user-defined metadata to organize your Tensorboards.
* **Note**: This field is non-authoritative, and will only manage the labels present in your configuration.
* Please refer to the field `effective_labels` for all of the labels present on the resource.
*/
@JvmName("tpdqcavvfvugyhrw")
public suspend fun labels(`value`: Map?) {
val toBeMapped = value
val mapped = toBeMapped?.let({ args0 -> of(args0) })
this.labels = mapped
}
/**
* @param values The labels with user-defined metadata to organize your Tensorboards.
* **Note**: This field is non-authoritative, and will only manage the labels present in your configuration.
* Please refer to the field `effective_labels` for all of the labels present on the resource.
*/
@JvmName("lqamyhjfptgsapue")
public fun labels(vararg values: Pair) {
val toBeMapped = values.toMap()
val mapped = toBeMapped.let({ args0 -> of(args0) })
this.labels = mapped
}
/**
* @param value The ID of the project in which the resource belongs.
* If it is not provided, the provider project is used.
*/
@JvmName("ovabqnwrexeyemel")
public suspend fun project(`value`: String?) {
val toBeMapped = value
val mapped = toBeMapped?.let({ args0 -> of(args0) })
this.project = mapped
}
/**
* @param value The region of the tensorboard. eg us-central1
*/
@JvmName("ygvykdetvpjddtdh")
public suspend fun region(`value`: String?) {
val toBeMapped = value
val mapped = toBeMapped?.let({ args0 -> of(args0) })
this.region = mapped
}
internal fun build(): AiTensorboardArgs = AiTensorboardArgs(
description = description,
displayName = displayName,
encryptionSpec = encryptionSpec,
labels = labels,
project = project,
region = region,
)
}