com.pulumi.gcp.bigquery.kotlin.RoutineArgs.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pulumi-gcp-kotlin Show documentation
Show all versions of pulumi-gcp-kotlin Show documentation
Build cloud applications and infrastructure by combining the safety and reliability of infrastructure as code with the power of the Kotlin programming language.
@file:Suppress("NAME_SHADOWING", "DEPRECATION")
package com.pulumi.gcp.bigquery.kotlin
import com.pulumi.core.Output
import com.pulumi.core.Output.of
import com.pulumi.gcp.bigquery.RoutineArgs.builder
import com.pulumi.gcp.bigquery.kotlin.inputs.RoutineArgumentArgs
import com.pulumi.gcp.bigquery.kotlin.inputs.RoutineArgumentArgsBuilder
import com.pulumi.gcp.bigquery.kotlin.inputs.RoutineRemoteFunctionOptionsArgs
import com.pulumi.gcp.bigquery.kotlin.inputs.RoutineRemoteFunctionOptionsArgsBuilder
import com.pulumi.gcp.bigquery.kotlin.inputs.RoutineSparkOptionsArgs
import com.pulumi.gcp.bigquery.kotlin.inputs.RoutineSparkOptionsArgsBuilder
import com.pulumi.kotlin.ConvertibleToJava
import com.pulumi.kotlin.PulumiTagMarker
import com.pulumi.kotlin.applySuspend
import kotlin.String
import kotlin.Suppress
import kotlin.Unit
import kotlin.collections.List
import kotlin.jvm.JvmName
/**
* A user-defined function or a stored procedure that belongs to a Dataset
* To get more information about Routine, see:
* * [API documentation](https://cloud.google.com/bigquery/docs/reference/rest/v2/routines)
* * How-to Guides
* * [Routines Intro](https://cloud.google.com/bigquery/docs/reference/rest/v2/routines)
* ## Example Usage
* ### Bigquery Routine Basic
*
* ```typescript
* import * as pulumi from "@pulumi/pulumi";
* import * as gcp from "@pulumi/gcp";
* const test = new gcp.bigquery.Dataset("test", {datasetId: "dataset_id"});
* const sproc = new gcp.bigquery.Routine("sproc", {
* datasetId: test.datasetId,
* routineId: "routine_id",
* routineType: "PROCEDURE",
* language: "SQL",
* definitionBody: "CREATE FUNCTION Add(x FLOAT64, y FLOAT64) RETURNS FLOAT64 AS (x + y);",
* });
* ```
* ```python
* import pulumi
* import pulumi_gcp as gcp
* test = gcp.bigquery.Dataset("test", dataset_id="dataset_id")
* sproc = gcp.bigquery.Routine("sproc",
* dataset_id=test.dataset_id,
* routine_id="routine_id",
* routine_type="PROCEDURE",
* language="SQL",
* definition_body="CREATE FUNCTION Add(x FLOAT64, y FLOAT64) RETURNS FLOAT64 AS (x + y);")
* ```
* ```csharp
* using System.Collections.Generic;
* using System.Linq;
* using Pulumi;
* using Gcp = Pulumi.Gcp;
* return await Deployment.RunAsync(() =>
* {
* var test = new Gcp.BigQuery.Dataset("test", new()
* {
* DatasetId = "dataset_id",
* });
* var sproc = new Gcp.BigQuery.Routine("sproc", new()
* {
* DatasetId = test.DatasetId,
* RoutineId = "routine_id",
* RoutineType = "PROCEDURE",
* Language = "SQL",
* DefinitionBody = "CREATE FUNCTION Add(x FLOAT64, y FLOAT64) RETURNS FLOAT64 AS (x + y);",
* });
* });
* ```
* ```go
* package main
* import (
* "github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/bigquery"
* "github.com/pulumi/pulumi/sdk/v3/go/pulumi"
* )
* func main() {
* pulumi.Run(func(ctx *pulumi.Context) error {
* test, err := bigquery.NewDataset(ctx, "test", &bigquery.DatasetArgs{
* DatasetId: pulumi.String("dataset_id"),
* })
* if err != nil {
* return err
* }
* _, err = bigquery.NewRoutine(ctx, "sproc", &bigquery.RoutineArgs{
* DatasetId: test.DatasetId,
* RoutineId: pulumi.String("routine_id"),
* RoutineType: pulumi.String("PROCEDURE"),
* Language: pulumi.String("SQL"),
* DefinitionBody: pulumi.String("CREATE FUNCTION Add(x FLOAT64, y FLOAT64) RETURNS FLOAT64 AS (x + y);"),
* })
* if err != nil {
* return err
* }
* return nil
* })
* }
* ```
* ```java
* package generated_program;
* import com.pulumi.Context;
* import com.pulumi.Pulumi;
* import com.pulumi.core.Output;
* import com.pulumi.gcp.bigquery.Dataset;
* import com.pulumi.gcp.bigquery.DatasetArgs;
* import com.pulumi.gcp.bigquery.Routine;
* import com.pulumi.gcp.bigquery.RoutineArgs;
* import java.util.List;
* import java.util.ArrayList;
* import java.util.Map;
* import java.io.File;
* import java.nio.file.Files;
* import java.nio.file.Paths;
* public class App {
* public static void main(String[] args) {
* Pulumi.run(App::stack);
* }
* public static void stack(Context ctx) {
* var test = new Dataset("test", DatasetArgs.builder()
* .datasetId("dataset_id")
* .build());
* var sproc = new Routine("sproc", RoutineArgs.builder()
* .datasetId(test.datasetId())
* .routineId("routine_id")
* .routineType("PROCEDURE")
* .language("SQL")
* .definitionBody("CREATE FUNCTION Add(x FLOAT64, y FLOAT64) RETURNS FLOAT64 AS (x + y);")
* .build());
* }
* }
* ```
* ```yaml
* resources:
* test:
* type: gcp:bigquery:Dataset
* properties:
* datasetId: dataset_id
* sproc:
* type: gcp:bigquery:Routine
* properties:
* datasetId: ${test.datasetId}
* routineId: routine_id
* routineType: PROCEDURE
* language: SQL
* definitionBody: CREATE FUNCTION Add(x FLOAT64, y FLOAT64) RETURNS FLOAT64 AS (x + y);
* ```
*
* ### Bigquery Routine Json
*
* ```typescript
* import * as pulumi from "@pulumi/pulumi";
* import * as gcp from "@pulumi/gcp";
* const test = new gcp.bigquery.Dataset("test", {datasetId: "dataset_id"});
* const sproc = new gcp.bigquery.Routine("sproc", {
* datasetId: test.datasetId,
* routineId: "routine_id",
* routineType: "SCALAR_FUNCTION",
* language: "JAVASCRIPT",
* definitionBody: "CREATE FUNCTION multiplyInputs return x*y;",
* arguments: [
* {
* name: "x",
* dataType: "{\"typeKind\" : \"FLOAT64\"}",
* },
* {
* name: "y",
* dataType: "{\"typeKind\" : \"FLOAT64\"}",
* },
* ],
* returnType: "{\"typeKind\" : \"FLOAT64\"}",
* });
* ```
* ```python
* import pulumi
* import pulumi_gcp as gcp
* test = gcp.bigquery.Dataset("test", dataset_id="dataset_id")
* sproc = gcp.bigquery.Routine("sproc",
* dataset_id=test.dataset_id,
* routine_id="routine_id",
* routine_type="SCALAR_FUNCTION",
* language="JAVASCRIPT",
* definition_body="CREATE FUNCTION multiplyInputs return x*y;",
* arguments=[
* {
* "name": "x",
* "data_type": "{\"typeKind\" : \"FLOAT64\"}",
* },
* {
* "name": "y",
* "data_type": "{\"typeKind\" : \"FLOAT64\"}",
* },
* ],
* return_type="{\"typeKind\" : \"FLOAT64\"}")
* ```
* ```csharp
* using System.Collections.Generic;
* using System.Linq;
* using Pulumi;
* using Gcp = Pulumi.Gcp;
* return await Deployment.RunAsync(() =>
* {
* var test = new Gcp.BigQuery.Dataset("test", new()
* {
* DatasetId = "dataset_id",
* });
* var sproc = new Gcp.BigQuery.Routine("sproc", new()
* {
* DatasetId = test.DatasetId,
* RoutineId = "routine_id",
* RoutineType = "SCALAR_FUNCTION",
* Language = "JAVASCRIPT",
* DefinitionBody = "CREATE FUNCTION multiplyInputs return x*y;",
* Arguments = new[]
* {
* new Gcp.BigQuery.Inputs.RoutineArgumentArgs
* {
* Name = "x",
* DataType = "{\"typeKind\" : \"FLOAT64\"}",
* },
* new Gcp.BigQuery.Inputs.RoutineArgumentArgs
* {
* Name = "y",
* DataType = "{\"typeKind\" : \"FLOAT64\"}",
* },
* },
* ReturnType = "{\"typeKind\" : \"FLOAT64\"}",
* });
* });
* ```
* ```go
* package main
* import (
* "github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/bigquery"
* "github.com/pulumi/pulumi/sdk/v3/go/pulumi"
* )
* func main() {
* pulumi.Run(func(ctx *pulumi.Context) error {
* test, err := bigquery.NewDataset(ctx, "test", &bigquery.DatasetArgs{
* DatasetId: pulumi.String("dataset_id"),
* })
* if err != nil {
* return err
* }
* _, err = bigquery.NewRoutine(ctx, "sproc", &bigquery.RoutineArgs{
* DatasetId: test.DatasetId,
* RoutineId: pulumi.String("routine_id"),
* RoutineType: pulumi.String("SCALAR_FUNCTION"),
* Language: pulumi.String("JAVASCRIPT"),
* DefinitionBody: pulumi.String("CREATE FUNCTION multiplyInputs return x*y;"),
* Arguments: bigquery.RoutineArgumentArray{
* &bigquery.RoutineArgumentArgs{
* Name: pulumi.String("x"),
* DataType: pulumi.String("{\"typeKind\" : \"FLOAT64\"}"),
* },
* &bigquery.RoutineArgumentArgs{
* Name: pulumi.String("y"),
* DataType: pulumi.String("{\"typeKind\" : \"FLOAT64\"}"),
* },
* },
* ReturnType: pulumi.String("{\"typeKind\" : \"FLOAT64\"}"),
* })
* if err != nil {
* return err
* }
* return nil
* })
* }
* ```
* ```java
* package generated_program;
* import com.pulumi.Context;
* import com.pulumi.Pulumi;
* import com.pulumi.core.Output;
* import com.pulumi.gcp.bigquery.Dataset;
* import com.pulumi.gcp.bigquery.DatasetArgs;
* import com.pulumi.gcp.bigquery.Routine;
* import com.pulumi.gcp.bigquery.RoutineArgs;
* import com.pulumi.gcp.bigquery.inputs.RoutineArgumentArgs;
* import java.util.List;
* import java.util.ArrayList;
* import java.util.Map;
* import java.io.File;
* import java.nio.file.Files;
* import java.nio.file.Paths;
* public class App {
* public static void main(String[] args) {
* Pulumi.run(App::stack);
* }
* public static void stack(Context ctx) {
* var test = new Dataset("test", DatasetArgs.builder()
* .datasetId("dataset_id")
* .build());
* var sproc = new Routine("sproc", RoutineArgs.builder()
* .datasetId(test.datasetId())
* .routineId("routine_id")
* .routineType("SCALAR_FUNCTION")
* .language("JAVASCRIPT")
* .definitionBody("CREATE FUNCTION multiplyInputs return x*y;")
* .arguments(
* RoutineArgumentArgs.builder()
* .name("x")
* .dataType("{\"typeKind\" : \"FLOAT64\"}")
* .build(),
* RoutineArgumentArgs.builder()
* .name("y")
* .dataType("{\"typeKind\" : \"FLOAT64\"}")
* .build())
* .returnType("{\"typeKind\" : \"FLOAT64\"}")
* .build());
* }
* }
* ```
* ```yaml
* resources:
* test:
* type: gcp:bigquery:Dataset
* properties:
* datasetId: dataset_id
* sproc:
* type: gcp:bigquery:Routine
* properties:
* datasetId: ${test.datasetId}
* routineId: routine_id
* routineType: SCALAR_FUNCTION
* language: JAVASCRIPT
* definitionBody: CREATE FUNCTION multiplyInputs return x*y;
* arguments:
* - name: x
* dataType: '{"typeKind" : "FLOAT64"}'
* - name: y
* dataType: '{"typeKind" : "FLOAT64"}'
* returnType: '{"typeKind" : "FLOAT64"}'
* ```
*
* ### Bigquery Routine Tvf
*
* ```typescript
* import * as pulumi from "@pulumi/pulumi";
* import * as gcp from "@pulumi/gcp";
* const test = new gcp.bigquery.Dataset("test", {datasetId: "dataset_id"});
* const sproc = new gcp.bigquery.Routine("sproc", {
* datasetId: test.datasetId,
* routineId: "routine_id",
* routineType: "TABLE_VALUED_FUNCTION",
* language: "SQL",
* definitionBody: "SELECT 1 + value AS value\n",
* arguments: [{
* name: "value",
* argumentKind: "FIXED_TYPE",
* dataType: JSON.stringify({
* typeKind: "INT64",
* }),
* }],
* returnTableType: JSON.stringify({
* columns: [{
* name: "value",
* type: {
* typeKind: "INT64",
* },
* }],
* }),
* });
* ```
* ```python
* import pulumi
* import json
* import pulumi_gcp as gcp
* test = gcp.bigquery.Dataset("test", dataset_id="dataset_id")
* sproc = gcp.bigquery.Routine("sproc",
* dataset_id=test.dataset_id,
* routine_id="routine_id",
* routine_type="TABLE_VALUED_FUNCTION",
* language="SQL",
* definition_body="SELECT 1 + value AS value\n",
* arguments=[{
* "name": "value",
* "argument_kind": "FIXED_TYPE",
* "data_type": json.dumps({
* "typeKind": "INT64",
* }),
* }],
* return_table_type=json.dumps({
* "columns": [{
* "name": "value",
* "type": {
* "typeKind": "INT64",
* },
* }],
* }))
* ```
* ```csharp
* using System.Collections.Generic;
* using System.Linq;
* using System.Text.Json;
* using Pulumi;
* using Gcp = Pulumi.Gcp;
* return await Deployment.RunAsync(() =>
* {
* var test = new Gcp.BigQuery.Dataset("test", new()
* {
* DatasetId = "dataset_id",
* });
* var sproc = new Gcp.BigQuery.Routine("sproc", new()
* {
* DatasetId = test.DatasetId,
* RoutineId = "routine_id",
* RoutineType = "TABLE_VALUED_FUNCTION",
* Language = "SQL",
* DefinitionBody = @"SELECT 1 + value AS value
* ",
* Arguments = new[]
* {
* new Gcp.BigQuery.Inputs.RoutineArgumentArgs
* {
* Name = "value",
* ArgumentKind = "FIXED_TYPE",
* DataType = JsonSerializer.Serialize(new Dictionary
* {
* ["typeKind"] = "INT64",
* }),
* },
* },
* ReturnTableType = JsonSerializer.Serialize(new Dictionary
* {
* ["columns"] = new[]
* {
* new Dictionary
* {
* ["name"] = "value",
* ["type"] = new Dictionary
* {
* ["typeKind"] = "INT64",
* },
* },
* },
* }),
* });
* });
* ```
* ```go
* package main
* import (
* "encoding/json"
* "github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/bigquery"
* "github.com/pulumi/pulumi/sdk/v3/go/pulumi"
* )
* func main() {
* pulumi.Run(func(ctx *pulumi.Context) error {
* test, err := bigquery.NewDataset(ctx, "test", &bigquery.DatasetArgs{
* DatasetId: pulumi.String("dataset_id"),
* })
* if err != nil {
* return err
* }
* tmpJSON0, err := json.Marshal(map[string]interface{}{
* "typeKind": "INT64",
* })
* if err != nil {
* return err
* }
* json0 := string(tmpJSON0)
* tmpJSON1, err := json.Marshal(map[string]interface{}{
* "columns": []map[string]interface{}{
* map[string]interface{}{
* "name": "value",
* "type": map[string]interface{}{
* "typeKind": "INT64",
* },
* },
* },
* })
* if err != nil {
* return err
* }
* json1 := string(tmpJSON1)
* _, err = bigquery.NewRoutine(ctx, "sproc", &bigquery.RoutineArgs{
* DatasetId: test.DatasetId,
* RoutineId: pulumi.String("routine_id"),
* RoutineType: pulumi.String("TABLE_VALUED_FUNCTION"),
* Language: pulumi.String("SQL"),
* DefinitionBody: pulumi.String("SELECT 1 + value AS value\n"),
* Arguments: bigquery.RoutineArgumentArray{
* &bigquery.RoutineArgumentArgs{
* Name: pulumi.String("value"),
* ArgumentKind: pulumi.String("FIXED_TYPE"),
* DataType: pulumi.String(json0),
* },
* },
* ReturnTableType: pulumi.String(json1),
* })
* if err != nil {
* return err
* }
* return nil
* })
* }
* ```
* ```java
* package generated_program;
* import com.pulumi.Context;
* import com.pulumi.Pulumi;
* import com.pulumi.core.Output;
* import com.pulumi.gcp.bigquery.Dataset;
* import com.pulumi.gcp.bigquery.DatasetArgs;
* import com.pulumi.gcp.bigquery.Routine;
* import com.pulumi.gcp.bigquery.RoutineArgs;
* import com.pulumi.gcp.bigquery.inputs.RoutineArgumentArgs;
* import static com.pulumi.codegen.internal.Serialization.*;
* import java.util.List;
* import java.util.ArrayList;
* import java.util.Map;
* import java.io.File;
* import java.nio.file.Files;
* import java.nio.file.Paths;
* public class App {
* public static void main(String[] args) {
* Pulumi.run(App::stack);
* }
* public static void stack(Context ctx) {
* var test = new Dataset("test", DatasetArgs.builder()
* .datasetId("dataset_id")
* .build());
* var sproc = new Routine("sproc", RoutineArgs.builder()
* .datasetId(test.datasetId())
* .routineId("routine_id")
* .routineType("TABLE_VALUED_FUNCTION")
* .language("SQL")
* .definitionBody("""
* SELECT 1 + value AS value
* """)
* .arguments(RoutineArgumentArgs.builder()
* .name("value")
* .argumentKind("FIXED_TYPE")
* .dataType(serializeJson(
* jsonObject(
* jsonProperty("typeKind", "INT64")
* )))
* .build())
* .returnTableType(serializeJson(
* jsonObject(
* jsonProperty("columns", jsonArray(jsonObject(
* jsonProperty("name", "value"),
* jsonProperty("type", jsonObject(
* jsonProperty("typeKind", "INT64")
* ))
* )))
* )))
* .build());
* }
* }
* ```
* ```yaml
* resources:
* test:
* type: gcp:bigquery:Dataset
* properties:
* datasetId: dataset_id
* sproc:
* type: gcp:bigquery:Routine
* properties:
* datasetId: ${test.datasetId}
* routineId: routine_id
* routineType: TABLE_VALUED_FUNCTION
* language: SQL
* definitionBody: |
* SELECT 1 + value AS value
* arguments:
* - name: value
* argumentKind: FIXED_TYPE
* dataType:
* fn::toJSON:
* typeKind: INT64
* returnTableType:
* fn::toJSON:
* columns:
* - name: value
* type:
* typeKind: INT64
* ```
*
* ### Bigquery Routine Pyspark
*
* ```typescript
* import * as pulumi from "@pulumi/pulumi";
* import * as gcp from "@pulumi/gcp";
* const test = new gcp.bigquery.Dataset("test", {datasetId: "dataset_id"});
* const testConnection = new gcp.bigquery.Connection("test", {
* connectionId: "connection_id",
* location: "US",
* spark: {},
* });
* const pyspark = new gcp.bigquery.Routine("pyspark", {
* datasetId: test.datasetId,
* routineId: "routine_id",
* routineType: "PROCEDURE",
* language: "PYTHON",
* definitionBody: `from pyspark.sql import SparkSession
* spark = SparkSession.builder.appName("spark-bigquery-demo").getOrCreate()
* # Load data from BigQuery.
* words = spark.read.format("bigquery") \\
* .option("table", "bigquery-public-data:samples.shakespeare") \\
* .load()
* words.createOrReplaceTempView("words")
* # Perform word count.
* word_count = words.select('word', 'word_count').groupBy('word').sum('word_count').withColumnRenamed("sum(word_count)", "sum_word_count")
* word_count.show()
* word_count.printSchema()
* # Saving the data to BigQuery
* word_count.write.format("bigquery") \\
* .option("writeMethod", "direct") \\
* .save("wordcount_dataset.wordcount_output")
* `,
* sparkOptions: {
* connection: testConnection.name,
* runtimeVersion: "2.1",
* },
* });
* ```
* ```python
* import pulumi
* import pulumi_gcp as gcp
* test = gcp.bigquery.Dataset("test", dataset_id="dataset_id")
* test_connection = gcp.bigquery.Connection("test",
* connection_id="connection_id",
* location="US",
* spark={})
* pyspark = gcp.bigquery.Routine("pyspark",
* dataset_id=test.dataset_id,
* routine_id="routine_id",
* routine_type="PROCEDURE",
* language="PYTHON",
* definition_body="""from pyspark.sql import SparkSession
* spark = SparkSession.builder.appName("spark-bigquery-demo").getOrCreate()
* # Load data from BigQuery.
* words = spark.read.format("bigquery") \
* .option("table", "bigquery-public-data:samples.shakespeare") \
* .load()
* words.createOrReplaceTempView("words")
* # Perform word count.
* word_count = words.select('word', 'word_count').groupBy('word').sum('word_count').withColumnRenamed("sum(word_count)", "sum_word_count")
* word_count.show()
* word_count.printSchema()
* # Saving the data to BigQuery
* word_count.write.format("bigquery") \
* .option("writeMethod", "direct") \
* .save("wordcount_dataset.wordcount_output")
* """,
* spark_options={
* "connection": test_connection.name,
* "runtime_version": "2.1",
* })
* ```
* ```csharp
* using System.Collections.Generic;
* using System.Linq;
* using Pulumi;
* using Gcp = Pulumi.Gcp;
* return await Deployment.RunAsync(() =>
* {
* var test = new Gcp.BigQuery.Dataset("test", new()
* {
* DatasetId = "dataset_id",
* });
* var testConnection = new Gcp.BigQuery.Connection("test", new()
* {
* ConnectionId = "connection_id",
* Location = "US",
* Spark = null,
* });
* var pyspark = new Gcp.BigQuery.Routine("pyspark", new()
* {
* DatasetId = test.DatasetId,
* RoutineId = "routine_id",
* RoutineType = "PROCEDURE",
* Language = "PYTHON",
* DefinitionBody = @"from pyspark.sql import SparkSession
* spark = SparkSession.builder.appName(""spark-bigquery-demo"").getOrCreate()
* # Load data from BigQuery.
* words = spark.read.format(""bigquery"") \
* .option(""table"", ""bigquery-public-data:samples.shakespeare"") \
* .load()
* words.createOrReplaceTempView(""words"")
* # Perform word count.
* word_count = words.select('word', 'word_count').groupBy('word').sum('word_count').withColumnRenamed(""sum(word_count)"", ""sum_word_count"")
* word_count.show()
* word_count.printSchema()
* # Saving the data to BigQuery
* word_count.write.format(""bigquery"") \
* .option(""writeMethod"", ""direct"") \
* .save(""wordcount_dataset.wordcount_output"")
* ",
* SparkOptions = new Gcp.BigQuery.Inputs.RoutineSparkOptionsArgs
* {
* Connection = testConnection.Name,
* RuntimeVersion = "2.1",
* },
* });
* });
* ```
* ```go
* package main
* import (
* "github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/bigquery"
* "github.com/pulumi/pulumi/sdk/v3/go/pulumi"
* )
* func main() {
* pulumi.Run(func(ctx *pulumi.Context) error {
* test, err := bigquery.NewDataset(ctx, "test", &bigquery.DatasetArgs{
* DatasetId: pulumi.String("dataset_id"),
* })
* if err != nil {
* return err
* }
* testConnection, err := bigquery.NewConnection(ctx, "test", &bigquery.ConnectionArgs{
* ConnectionId: pulumi.String("connection_id"),
* Location: pulumi.String("US"),
* Spark: &bigquery.ConnectionSparkArgs{},
* })
* if err != nil {
* return err
* }
* _, err = bigquery.NewRoutine(ctx, "pyspark", &bigquery.RoutineArgs{
* DatasetId: test.DatasetId,
* RoutineId: pulumi.String("routine_id"),
* RoutineType: pulumi.String("PROCEDURE"),
* Language: pulumi.String("PYTHON"),
* DefinitionBody: pulumi.String(`from pyspark.sql import SparkSession
* spark = SparkSession.builder.appName("spark-bigquery-demo").getOrCreate()
* # Load data from BigQuery.
* words = spark.read.format("bigquery") \
* .option("table", "bigquery-public-data:samples.shakespeare") \
* .load()
* words.createOrReplaceTempView("words")
* # Perform word count.
* word_count = words.select('word', 'word_count').groupBy('word').sum('word_count').withColumnRenamed("sum(word_count)", "sum_word_count")
* word_count.show()
* word_count.printSchema()
* # Saving the data to BigQuery
* word_count.write.format("bigquery") \
* .option("writeMethod", "direct") \
* .save("wordcount_dataset.wordcount_output")
* `),
* SparkOptions: &bigquery.RoutineSparkOptionsArgs{
* Connection: testConnection.Name,
* RuntimeVersion: pulumi.String("2.1"),
* },
* })
* if err != nil {
* return err
* }
* return nil
* })
* }
* ```
* ```java
* package generated_program;
* import com.pulumi.Context;
* import com.pulumi.Pulumi;
* import com.pulumi.core.Output;
* import com.pulumi.gcp.bigquery.Dataset;
* import com.pulumi.gcp.bigquery.DatasetArgs;
* import com.pulumi.gcp.bigquery.Connection;
* import com.pulumi.gcp.bigquery.ConnectionArgs;
* import com.pulumi.gcp.bigquery.inputs.ConnectionSparkArgs;
* import com.pulumi.gcp.bigquery.Routine;
* import com.pulumi.gcp.bigquery.RoutineArgs;
* import com.pulumi.gcp.bigquery.inputs.RoutineSparkOptionsArgs;
* import java.util.List;
* import java.util.ArrayList;
* import java.util.Map;
* import java.io.File;
* import java.nio.file.Files;
* import java.nio.file.Paths;
* public class App {
* public static void main(String[] args) {
* Pulumi.run(App::stack);
* }
* public static void stack(Context ctx) {
* var test = new Dataset("test", DatasetArgs.builder()
* .datasetId("dataset_id")
* .build());
* var testConnection = new Connection("testConnection", ConnectionArgs.builder()
* .connectionId("connection_id")
* .location("US")
* .spark()
* .build());
* var pyspark = new Routine("pyspark", RoutineArgs.builder()
* .datasetId(test.datasetId())
* .routineId("routine_id")
* .routineType("PROCEDURE")
* .language("PYTHON")
* .definitionBody("""
* from pyspark.sql import SparkSession
* spark = SparkSession.builder.appName("spark-bigquery-demo").getOrCreate()
* # Load data from BigQuery.
* words = spark.read.format("bigquery") \
* .option("table", "bigquery-public-data:samples.shakespeare") \
* .load()
* words.createOrReplaceTempView("words")
* # Perform word count.
* word_count = words.select('word', 'word_count').groupBy('word').sum('word_count').withColumnRenamed("sum(word_count)", "sum_word_count")
* word_count.show()
* word_count.printSchema()
* # Saving the data to BigQuery
* word_count.write.format("bigquery") \
* .option("writeMethod", "direct") \
* .save("wordcount_dataset.wordcount_output")
* """)
* .sparkOptions(RoutineSparkOptionsArgs.builder()
* .connection(testConnection.name())
* .runtimeVersion("2.1")
* .build())
* .build());
* }
* }
* ```
* ```yaml
* resources:
* test:
* type: gcp:bigquery:Dataset
* properties:
* datasetId: dataset_id
* testConnection:
* type: gcp:bigquery:Connection
* name: test
* properties:
* connectionId: connection_id
* location: US
* spark: {}
* pyspark:
* type: gcp:bigquery:Routine
* properties:
* datasetId: ${test.datasetId}
* routineId: routine_id
* routineType: PROCEDURE
* language: PYTHON
* definitionBody: "from pyspark.sql import SparkSession\n\nspark = SparkSession.builder.appName(\"spark-bigquery-demo\").getOrCreate()\n \n# Load data from BigQuery.\nwords = spark.read.format(\"bigquery\") \\\n .option(\"table\", \"bigquery-public-data:samples.shakespeare\") \\\n .load()\nwords.createOrReplaceTempView(\"words\")\n \n# Perform word count.\nword_count = words.select('word', 'word_count').groupBy('word').sum('word_count').withColumnRenamed(\"sum(word_count)\", \"sum_word_count\")\nword_count.show()\nword_count.printSchema()\n \n# Saving the data to BigQuery\nword_count.write.format(\"bigquery\") \\\n .option(\"writeMethod\", \"direct\") \\\n .save(\"wordcount_dataset.wordcount_output\")\n"
* sparkOptions:
* connection: ${testConnection.name}
* runtimeVersion: '2.1'
* ```
*
* ### Bigquery Routine Pyspark Mainfile
*
* ```typescript
* import * as pulumi from "@pulumi/pulumi";
* import * as gcp from "@pulumi/gcp";
* const test = new gcp.bigquery.Dataset("test", {datasetId: "dataset_id"});
* const testConnection = new gcp.bigquery.Connection("test", {
* connectionId: "connection_id",
* location: "US",
* spark: {},
* });
* const pysparkMainfile = new gcp.bigquery.Routine("pyspark_mainfile", {
* datasetId: test.datasetId,
* routineId: "routine_id",
* routineType: "PROCEDURE",
* language: "PYTHON",
* definitionBody: "",
* sparkOptions: {
* connection: testConnection.name,
* runtimeVersion: "2.1",
* mainFileUri: "gs://test-bucket/main.py",
* pyFileUris: ["gs://test-bucket/lib.py"],
* fileUris: ["gs://test-bucket/distribute_in_executor.json"],
* archiveUris: ["gs://test-bucket/distribute_in_executor.tar.gz"],
* },
* });
* ```
* ```python
* import pulumi
* import pulumi_gcp as gcp
* test = gcp.bigquery.Dataset("test", dataset_id="dataset_id")
* test_connection = gcp.bigquery.Connection("test",
* connection_id="connection_id",
* location="US",
* spark={})
* pyspark_mainfile = gcp.bigquery.Routine("pyspark_mainfile",
* dataset_id=test.dataset_id,
* routine_id="routine_id",
* routine_type="PROCEDURE",
* language="PYTHON",
* definition_body="",
* spark_options={
* "connection": test_connection.name,
* "runtime_version": "2.1",
* "main_file_uri": "gs://test-bucket/main.py",
* "py_file_uris": ["gs://test-bucket/lib.py"],
* "file_uris": ["gs://test-bucket/distribute_in_executor.json"],
* "archive_uris": ["gs://test-bucket/distribute_in_executor.tar.gz"],
* })
* ```
* ```csharp
* using System.Collections.Generic;
* using System.Linq;
* using Pulumi;
* using Gcp = Pulumi.Gcp;
* return await Deployment.RunAsync(() =>
* {
* var test = new Gcp.BigQuery.Dataset("test", new()
* {
* DatasetId = "dataset_id",
* });
* var testConnection = new Gcp.BigQuery.Connection("test", new()
* {
* ConnectionId = "connection_id",
* Location = "US",
* Spark = null,
* });
* var pysparkMainfile = new Gcp.BigQuery.Routine("pyspark_mainfile", new()
* {
* DatasetId = test.DatasetId,
* RoutineId = "routine_id",
* RoutineType = "PROCEDURE",
* Language = "PYTHON",
* DefinitionBody = "",
* SparkOptions = new Gcp.BigQuery.Inputs.RoutineSparkOptionsArgs
* {
* Connection = testConnection.Name,
* RuntimeVersion = "2.1",
* MainFileUri = "gs://test-bucket/main.py",
* PyFileUris = new[]
* {
* "gs://test-bucket/lib.py",
* },
* FileUris = new[]
* {
* "gs://test-bucket/distribute_in_executor.json",
* },
* ArchiveUris = new[]
* {
* "gs://test-bucket/distribute_in_executor.tar.gz",
* },
* },
* });
* });
* ```
* ```go
* package main
* import (
* "github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/bigquery"
* "github.com/pulumi/pulumi/sdk/v3/go/pulumi"
* )
* func main() {
* pulumi.Run(func(ctx *pulumi.Context) error {
* test, err := bigquery.NewDataset(ctx, "test", &bigquery.DatasetArgs{
* DatasetId: pulumi.String("dataset_id"),
* })
* if err != nil {
* return err
* }
* testConnection, err := bigquery.NewConnection(ctx, "test", &bigquery.ConnectionArgs{
* ConnectionId: pulumi.String("connection_id"),
* Location: pulumi.String("US"),
* Spark: &bigquery.ConnectionSparkArgs{},
* })
* if err != nil {
* return err
* }
* _, err = bigquery.NewRoutine(ctx, "pyspark_mainfile", &bigquery.RoutineArgs{
* DatasetId: test.DatasetId,
* RoutineId: pulumi.String("routine_id"),
* RoutineType: pulumi.String("PROCEDURE"),
* Language: pulumi.String("PYTHON"),
* DefinitionBody: pulumi.String(""),
* SparkOptions: &bigquery.RoutineSparkOptionsArgs{
* Connection: testConnection.Name,
* RuntimeVersion: pulumi.String("2.1"),
* MainFileUri: pulumi.String("gs://test-bucket/main.py"),
* PyFileUris: pulumi.StringArray{
* pulumi.String("gs://test-bucket/lib.py"),
* },
* FileUris: pulumi.StringArray{
* pulumi.String("gs://test-bucket/distribute_in_executor.json"),
* },
* ArchiveUris: pulumi.StringArray{
* pulumi.String("gs://test-bucket/distribute_in_executor.tar.gz"),
* },
* },
* })
* if err != nil {
* return err
* }
* return nil
* })
* }
* ```
* ```java
* package generated_program;
* import com.pulumi.Context;
* import com.pulumi.Pulumi;
* import com.pulumi.core.Output;
* import com.pulumi.gcp.bigquery.Dataset;
* import com.pulumi.gcp.bigquery.DatasetArgs;
* import com.pulumi.gcp.bigquery.Connection;
* import com.pulumi.gcp.bigquery.ConnectionArgs;
* import com.pulumi.gcp.bigquery.inputs.ConnectionSparkArgs;
* import com.pulumi.gcp.bigquery.Routine;
* import com.pulumi.gcp.bigquery.RoutineArgs;
* import com.pulumi.gcp.bigquery.inputs.RoutineSparkOptionsArgs;
* import java.util.List;
* import java.util.ArrayList;
* import java.util.Map;
* import java.io.File;
* import java.nio.file.Files;
* import java.nio.file.Paths;
* public class App {
* public static void main(String[] args) {
* Pulumi.run(App::stack);
* }
* public static void stack(Context ctx) {
* var test = new Dataset("test", DatasetArgs.builder()
* .datasetId("dataset_id")
* .build());
* var testConnection = new Connection("testConnection", ConnectionArgs.builder()
* .connectionId("connection_id")
* .location("US")
* .spark()
* .build());
* var pysparkMainfile = new Routine("pysparkMainfile", RoutineArgs.builder()
* .datasetId(test.datasetId())
* .routineId("routine_id")
* .routineType("PROCEDURE")
* .language("PYTHON")
* .definitionBody("")
* .sparkOptions(RoutineSparkOptionsArgs.builder()
* .connection(testConnection.name())
* .runtimeVersion("2.1")
* .mainFileUri("gs://test-bucket/main.py")
* .pyFileUris("gs://test-bucket/lib.py")
* .fileUris("gs://test-bucket/distribute_in_executor.json")
* .archiveUris("gs://test-bucket/distribute_in_executor.tar.gz")
* .build())
* .build());
* }
* }
* ```
* ```yaml
* resources:
* test:
* type: gcp:bigquery:Dataset
* properties:
* datasetId: dataset_id
* testConnection:
* type: gcp:bigquery:Connection
* name: test
* properties:
* connectionId: connection_id
* location: US
* spark: {}
* pysparkMainfile:
* type: gcp:bigquery:Routine
* name: pyspark_mainfile
* properties:
* datasetId: ${test.datasetId}
* routineId: routine_id
* routineType: PROCEDURE
* language: PYTHON
* definitionBody: ""
* sparkOptions:
* connection: ${testConnection.name}
* runtimeVersion: '2.1'
* mainFileUri: gs://test-bucket/main.py
* pyFileUris:
* - gs://test-bucket/lib.py
* fileUris:
* - gs://test-bucket/distribute_in_executor.json
* archiveUris:
* - gs://test-bucket/distribute_in_executor.tar.gz
* ```
*
* ### Bigquery Routine Spark Jar
*
* ```typescript
* import * as pulumi from "@pulumi/pulumi";
* import * as gcp from "@pulumi/gcp";
* const test = new gcp.bigquery.Dataset("test", {datasetId: "dataset_id"});
* const testConnection = new gcp.bigquery.Connection("test", {
* connectionId: "connection_id",
* location: "US",
* spark: {},
* });
* const sparkJar = new gcp.bigquery.Routine("spark_jar", {
* datasetId: test.datasetId,
* routineId: "routine_id",
* routineType: "PROCEDURE",
* language: "SCALA",
* definitionBody: "",
* sparkOptions: {
* connection: testConnection.name,
* runtimeVersion: "2.1",
* containerImage: "gcr.io/my-project-id/my-spark-image:latest",
* mainClass: "com.google.test.jar.MainClass",
* jarUris: ["gs://test-bucket/uberjar_spark_spark3.jar"],
* properties: {
* "spark.dataproc.scaling.version": "2",
* "spark.reducer.fetchMigratedShuffle.enabled": "true",
* },
* },
* });
* ```
* ```python
* import pulumi
* import pulumi_gcp as gcp
* test = gcp.bigquery.Dataset("test", dataset_id="dataset_id")
* test_connection = gcp.bigquery.Connection("test",
* connection_id="connection_id",
* location="US",
* spark={})
* spark_jar = gcp.bigquery.Routine("spark_jar",
* dataset_id=test.dataset_id,
* routine_id="routine_id",
* routine_type="PROCEDURE",
* language="SCALA",
* definition_body="",
* spark_options={
* "connection": test_connection.name,
* "runtime_version": "2.1",
* "container_image": "gcr.io/my-project-id/my-spark-image:latest",
* "main_class": "com.google.test.jar.MainClass",
* "jar_uris": ["gs://test-bucket/uberjar_spark_spark3.jar"],
* "properties": {
* "spark.dataproc.scaling.version": "2",
* "spark.reducer.fetchMigratedShuffle.enabled": "true",
* },
* })
* ```
* ```csharp
* using System.Collections.Generic;
* using System.Linq;
* using Pulumi;
* using Gcp = Pulumi.Gcp;
* return await Deployment.RunAsync(() =>
* {
* var test = new Gcp.BigQuery.Dataset("test", new()
* {
* DatasetId = "dataset_id",
* });
* var testConnection = new Gcp.BigQuery.Connection("test", new()
* {
* ConnectionId = "connection_id",
* Location = "US",
* Spark = null,
* });
* var sparkJar = new Gcp.BigQuery.Routine("spark_jar", new()
* {
* DatasetId = test.DatasetId,
* RoutineId = "routine_id",
* RoutineType = "PROCEDURE",
* Language = "SCALA",
* DefinitionBody = "",
* SparkOptions = new Gcp.BigQuery.Inputs.RoutineSparkOptionsArgs
* {
* Connection = testConnection.Name,
* RuntimeVersion = "2.1",
* ContainerImage = "gcr.io/my-project-id/my-spark-image:latest",
* MainClass = "com.google.test.jar.MainClass",
* JarUris = new[]
* {
* "gs://test-bucket/uberjar_spark_spark3.jar",
* },
* Properties =
* {
* { "spark.dataproc.scaling.version", "2" },
* { "spark.reducer.fetchMigratedShuffle.enabled", "true" },
* },
* },
* });
* });
* ```
* ```go
* package main
* import (
* "github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/bigquery"
* "github.com/pulumi/pulumi/sdk/v3/go/pulumi"
* )
* func main() {
* pulumi.Run(func(ctx *pulumi.Context) error {
* test, err := bigquery.NewDataset(ctx, "test", &bigquery.DatasetArgs{
* DatasetId: pulumi.String("dataset_id"),
* })
* if err != nil {
* return err
* }
* testConnection, err := bigquery.NewConnection(ctx, "test", &bigquery.ConnectionArgs{
* ConnectionId: pulumi.String("connection_id"),
* Location: pulumi.String("US"),
* Spark: &bigquery.ConnectionSparkArgs{},
* })
* if err != nil {
* return err
* }
* _, err = bigquery.NewRoutine(ctx, "spark_jar", &bigquery.RoutineArgs{
* DatasetId: test.DatasetId,
* RoutineId: pulumi.String("routine_id"),
* RoutineType: pulumi.String("PROCEDURE"),
* Language: pulumi.String("SCALA"),
* DefinitionBody: pulumi.String(""),
* SparkOptions: &bigquery.RoutineSparkOptionsArgs{
* Connection: testConnection.Name,
* RuntimeVersion: pulumi.String("2.1"),
* ContainerImage: pulumi.String("gcr.io/my-project-id/my-spark-image:latest"),
* MainClass: pulumi.String("com.google.test.jar.MainClass"),
* JarUris: pulumi.StringArray{
* pulumi.String("gs://test-bucket/uberjar_spark_spark3.jar"),
* },
* Properties: pulumi.StringMap{
* "spark.dataproc.scaling.version": pulumi.String("2"),
* "spark.reducer.fetchMigratedShuffle.enabled": pulumi.String("true"),
* },
* },
* })
* if err != nil {
* return err
* }
* return nil
* })
* }
* ```
* ```java
* package generated_program;
* import com.pulumi.Context;
* import com.pulumi.Pulumi;
* import com.pulumi.core.Output;
* import com.pulumi.gcp.bigquery.Dataset;
* import com.pulumi.gcp.bigquery.DatasetArgs;
* import com.pulumi.gcp.bigquery.Connection;
* import com.pulumi.gcp.bigquery.ConnectionArgs;
* import com.pulumi.gcp.bigquery.inputs.ConnectionSparkArgs;
* import com.pulumi.gcp.bigquery.Routine;
* import com.pulumi.gcp.bigquery.RoutineArgs;
* import com.pulumi.gcp.bigquery.inputs.RoutineSparkOptionsArgs;
* import java.util.List;
* import java.util.ArrayList;
* import java.util.Map;
* import java.io.File;
* import java.nio.file.Files;
* import java.nio.file.Paths;
* public class App {
* public static void main(String[] args) {
* Pulumi.run(App::stack);
* }
* public static void stack(Context ctx) {
* var test = new Dataset("test", DatasetArgs.builder()
* .datasetId("dataset_id")
* .build());
* var testConnection = new Connection("testConnection", ConnectionArgs.builder()
* .connectionId("connection_id")
* .location("US")
* .spark()
* .build());
* var sparkJar = new Routine("sparkJar", RoutineArgs.builder()
* .datasetId(test.datasetId())
* .routineId("routine_id")
* .routineType("PROCEDURE")
* .language("SCALA")
* .definitionBody("")
* .sparkOptions(RoutineSparkOptionsArgs.builder()
* .connection(testConnection.name())
* .runtimeVersion("2.1")
* .containerImage("gcr.io/my-project-id/my-spark-image:latest")
* .mainClass("com.google.test.jar.MainClass")
* .jarUris("gs://test-bucket/uberjar_spark_spark3.jar")
* .properties(Map.ofEntries(
* Map.entry("spark.dataproc.scaling.version", "2"),
* Map.entry("spark.reducer.fetchMigratedShuffle.enabled", "true")
* ))
* .build())
* .build());
* }
* }
* ```
* ```yaml
* resources:
* test:
* type: gcp:bigquery:Dataset
* properties:
* datasetId: dataset_id
* testConnection:
* type: gcp:bigquery:Connection
* name: test
* properties:
* connectionId: connection_id
* location: US
* spark: {}
* sparkJar:
* type: gcp:bigquery:Routine
* name: spark_jar
* properties:
* datasetId: ${test.datasetId}
* routineId: routine_id
* routineType: PROCEDURE
* language: SCALA
* definitionBody: ""
* sparkOptions:
* connection: ${testConnection.name}
* runtimeVersion: '2.1'
* containerImage: gcr.io/my-project-id/my-spark-image:latest
* mainClass: com.google.test.jar.MainClass
* jarUris:
* - gs://test-bucket/uberjar_spark_spark3.jar
* properties:
* spark.dataproc.scaling.version: '2'
* spark.reducer.fetchMigratedShuffle.enabled: 'true'
* ```
*
* ### Bigquery Routine Data Governance Type
*
* ```typescript
* import * as pulumi from "@pulumi/pulumi";
* import * as gcp from "@pulumi/gcp";
* const test = new gcp.bigquery.Dataset("test", {datasetId: "tf_test_dataset_id_15222"});
* const customMaskingRoutine = new gcp.bigquery.Routine("custom_masking_routine", {
* datasetId: test.datasetId,
* routineId: "custom_masking_routine",
* routineType: "SCALAR_FUNCTION",
* language: "SQL",
* dataGovernanceType: "DATA_MASKING",
* definitionBody: "SAFE.REGEXP_REPLACE(ssn, '[0-9]', 'X')",
* arguments: [{
* name: "ssn",
* dataType: "{\"typeKind\" : \"STRING\"}",
* }],
* returnType: "{\"typeKind\" : \"STRING\"}",
* });
* ```
* ```python
* import pulumi
* import pulumi_gcp as gcp
* test = gcp.bigquery.Dataset("test", dataset_id="tf_test_dataset_id_15222")
* custom_masking_routine = gcp.bigquery.Routine("custom_masking_routine",
* dataset_id=test.dataset_id,
* routine_id="custom_masking_routine",
* routine_type="SCALAR_FUNCTION",
* language="SQL",
* data_governance_type="DATA_MASKING",
* definition_body="SAFE.REGEXP_REPLACE(ssn, '[0-9]', 'X')",
* arguments=[{
* "name": "ssn",
* "data_type": "{\"typeKind\" : \"STRING\"}",
* }],
* return_type="{\"typeKind\" : \"STRING\"}")
* ```
* ```csharp
* using System.Collections.Generic;
* using System.Linq;
* using Pulumi;
* using Gcp = Pulumi.Gcp;
* return await Deployment.RunAsync(() =>
* {
* var test = new Gcp.BigQuery.Dataset("test", new()
* {
* DatasetId = "tf_test_dataset_id_15222",
* });
* var customMaskingRoutine = new Gcp.BigQuery.Routine("custom_masking_routine", new()
* {
* DatasetId = test.DatasetId,
* RoutineId = "custom_masking_routine",
* RoutineType = "SCALAR_FUNCTION",
* Language = "SQL",
* DataGovernanceType = "DATA_MASKING",
* DefinitionBody = "SAFE.REGEXP_REPLACE(ssn, '[0-9]', 'X')",
* Arguments = new[]
* {
* new Gcp.BigQuery.Inputs.RoutineArgumentArgs
* {
* Name = "ssn",
* DataType = "{\"typeKind\" : \"STRING\"}",
* },
* },
* ReturnType = "{\"typeKind\" : \"STRING\"}",
* });
* });
* ```
* ```go
* package main
* import (
* "github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/bigquery"
* "github.com/pulumi/pulumi/sdk/v3/go/pulumi"
* )
* func main() {
* pulumi.Run(func(ctx *pulumi.Context) error {
* test, err := bigquery.NewDataset(ctx, "test", &bigquery.DatasetArgs{
* DatasetId: pulumi.String("tf_test_dataset_id_15222"),
* })
* if err != nil {
* return err
* }
* _, err = bigquery.NewRoutine(ctx, "custom_masking_routine", &bigquery.RoutineArgs{
* DatasetId: test.DatasetId,
* RoutineId: pulumi.String("custom_masking_routine"),
* RoutineType: pulumi.String("SCALAR_FUNCTION"),
* Language: pulumi.String("SQL"),
* DataGovernanceType: pulumi.String("DATA_MASKING"),
* DefinitionBody: pulumi.String("SAFE.REGEXP_REPLACE(ssn, '[0-9]', 'X')"),
* Arguments: bigquery.RoutineArgumentArray{
* &bigquery.RoutineArgumentArgs{
* Name: pulumi.String("ssn"),
* DataType: pulumi.String("{\"typeKind\" : \"STRING\"}"),
* },
* },
* ReturnType: pulumi.String("{\"typeKind\" : \"STRING\"}"),
* })
* if err != nil {
* return err
* }
* return nil
* })
* }
* ```
* ```java
* package generated_program;
* import com.pulumi.Context;
* import com.pulumi.Pulumi;
* import com.pulumi.core.Output;
* import com.pulumi.gcp.bigquery.Dataset;
* import com.pulumi.gcp.bigquery.DatasetArgs;
* import com.pulumi.gcp.bigquery.Routine;
* import com.pulumi.gcp.bigquery.RoutineArgs;
* import com.pulumi.gcp.bigquery.inputs.RoutineArgumentArgs;
* import java.util.List;
* import java.util.ArrayList;
* import java.util.Map;
* import java.io.File;
* import java.nio.file.Files;
* import java.nio.file.Paths;
* public class App {
* public static void main(String[] args) {
* Pulumi.run(App::stack);
* }
* public static void stack(Context ctx) {
* var test = new Dataset("test", DatasetArgs.builder()
* .datasetId("tf_test_dataset_id_15222")
* .build());
* var customMaskingRoutine = new Routine("customMaskingRoutine", RoutineArgs.builder()
* .datasetId(test.datasetId())
* .routineId("custom_masking_routine")
* .routineType("SCALAR_FUNCTION")
* .language("SQL")
* .dataGovernanceType("DATA_MASKING")
* .definitionBody("SAFE.REGEXP_REPLACE(ssn, '[0-9]', 'X')")
* .arguments(RoutineArgumentArgs.builder()
* .name("ssn")
* .dataType("{\"typeKind\" : \"STRING\"}")
* .build())
* .returnType("{\"typeKind\" : \"STRING\"}")
* .build());
* }
* }
* ```
* ```yaml
* resources:
* test:
* type: gcp:bigquery:Dataset
* properties:
* datasetId: tf_test_dataset_id_15222
* customMaskingRoutine:
* type: gcp:bigquery:Routine
* name: custom_masking_routine
* properties:
* datasetId: ${test.datasetId}
* routineId: custom_masking_routine
* routineType: SCALAR_FUNCTION
* language: SQL
* dataGovernanceType: DATA_MASKING
* definitionBody: SAFE.REGEXP_REPLACE(ssn, '[0-9]', 'X')
* arguments:
* - name: ssn
* dataType: '{"typeKind" : "STRING"}'
* returnType: '{"typeKind" : "STRING"}'
* ```
*
* ### Bigquery Routine Remote Function
*
* ```typescript
* import * as pulumi from "@pulumi/pulumi";
* import * as gcp from "@pulumi/gcp";
* const test = new gcp.bigquery.Dataset("test", {datasetId: "dataset_id"});
* const testConnection = new gcp.bigquery.Connection("test", {
* connectionId: "connection_id",
* location: "US",
* cloudResource: {},
* });
* const remoteFunction = new gcp.bigquery.Routine("remote_function", {
* datasetId: test.datasetId,
* routineId: "routine_id",
* routineType: "SCALAR_FUNCTION",
* definitionBody: "",
* returnType: "{\"typeKind\" : \"STRING\"}",
* remoteFunctionOptions: {
* endpoint: "https://us-east1-my_gcf_project.cloudfunctions.net/remote_add",
* connection: testConnection.name,
* maxBatchingRows: "10",
* userDefinedContext: {
* z: "1.5",
* },
* },
* });
* ```
* ```python
* import pulumi
* import pulumi_gcp as gcp
* test = gcp.bigquery.Dataset("test", dataset_id="dataset_id")
* test_connection = gcp.bigquery.Connection("test",
* connection_id="connection_id",
* location="US",
* cloud_resource={})
* remote_function = gcp.bigquery.Routine("remote_function",
* dataset_id=test.dataset_id,
* routine_id="routine_id",
* routine_type="SCALAR_FUNCTION",
* definition_body="",
* return_type="{\"typeKind\" : \"STRING\"}",
* remote_function_options={
* "endpoint": "https://us-east1-my_gcf_project.cloudfunctions.net/remote_add",
* "connection": test_connection.name,
* "max_batching_rows": "10",
* "user_defined_context": {
* "z": "1.5",
* },
* })
* ```
* ```csharp
* using System.Collections.Generic;
* using System.Linq;
* using Pulumi;
* using Gcp = Pulumi.Gcp;
* return await Deployment.RunAsync(() =>
* {
* var test = new Gcp.BigQuery.Dataset("test", new()
* {
* DatasetId = "dataset_id",
* });
* var testConnection = new Gcp.BigQuery.Connection("test", new()
* {
* ConnectionId = "connection_id",
* Location = "US",
* CloudResource = null,
* });
* var remoteFunction = new Gcp.BigQuery.Routine("remote_function", new()
* {
* DatasetId = test.DatasetId,
* RoutineId = "routine_id",
* RoutineType = "SCALAR_FUNCTION",
* DefinitionBody = "",
* ReturnType = "{\"typeKind\" : \"STRING\"}",
* RemoteFunctionOptions = new Gcp.BigQuery.Inputs.RoutineRemoteFunctionOptionsArgs
* {
* Endpoint = "https://us-east1-my_gcf_project.cloudfunctions.net/remote_add",
* Connection = testConnection.Name,
* MaxBatchingRows = "10",
* UserDefinedContext =
* {
* { "z", "1.5" },
* },
* },
* });
* });
* ```
* ```go
* package main
* import (
* "github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/bigquery"
* "github.com/pulumi/pulumi/sdk/v3/go/pulumi"
* )
* func main() {
* pulumi.Run(func(ctx *pulumi.Context) error {
* test, err := bigquery.NewDataset(ctx, "test", &bigquery.DatasetArgs{
* DatasetId: pulumi.String("dataset_id"),
* })
* if err != nil {
* return err
* }
* testConnection, err := bigquery.NewConnection(ctx, "test", &bigquery.ConnectionArgs{
* ConnectionId: pulumi.String("connection_id"),
* Location: pulumi.String("US"),
* CloudResource: &bigquery.ConnectionCloudResourceArgs{},
* })
* if err != nil {
* return err
* }
* _, err = bigquery.NewRoutine(ctx, "remote_function", &bigquery.RoutineArgs{
* DatasetId: test.DatasetId,
* RoutineId: pulumi.String("routine_id"),
* RoutineType: pulumi.String("SCALAR_FUNCTION"),
* DefinitionBody: pulumi.String(""),
* ReturnType: pulumi.String("{\"typeKind\" : \"STRING\"}"),
* RemoteFunctionOptions: &bigquery.RoutineRemoteFunctionOptionsArgs{
* Endpoint: pulumi.String("https://us-east1-my_gcf_project.cloudfunctions.net/remote_add"),
* Connection: testConnection.Name,
* MaxBatchingRows: pulumi.String("10"),
* UserDefinedContext: pulumi.StringMap{
* "z": pulumi.String("1.5"),
* },
* },
* })
* if err != nil {
* return err
* }
* return nil
* })
* }
* ```
* ```java
* package generated_program;
* import com.pulumi.Context;
* import com.pulumi.Pulumi;
* import com.pulumi.core.Output;
* import com.pulumi.gcp.bigquery.Dataset;
* import com.pulumi.gcp.bigquery.DatasetArgs;
* import com.pulumi.gcp.bigquery.Connection;
* import com.pulumi.gcp.bigquery.ConnectionArgs;
* import com.pulumi.gcp.bigquery.inputs.ConnectionCloudResourceArgs;
* import com.pulumi.gcp.bigquery.Routine;
* import com.pulumi.gcp.bigquery.RoutineArgs;
* import com.pulumi.gcp.bigquery.inputs.RoutineRemoteFunctionOptionsArgs;
* import java.util.List;
* import java.util.ArrayList;
* import java.util.Map;
* import java.io.File;
* import java.nio.file.Files;
* import java.nio.file.Paths;
* public class App {
* public static void main(String[] args) {
* Pulumi.run(App::stack);
* }
* public static void stack(Context ctx) {
* var test = new Dataset("test", DatasetArgs.builder()
* .datasetId("dataset_id")
* .build());
* var testConnection = new Connection("testConnection", ConnectionArgs.builder()
* .connectionId("connection_id")
* .location("US")
* .cloudResource()
* .build());
* var remoteFunction = new Routine("remoteFunction", RoutineArgs.builder()
* .datasetId(test.datasetId())
* .routineId("routine_id")
* .routineType("SCALAR_FUNCTION")
* .definitionBody("")
* .returnType("{\"typeKind\" : \"STRING\"}")
* .remoteFunctionOptions(RoutineRemoteFunctionOptionsArgs.builder()
* .endpoint("https://us-east1-my_gcf_project.cloudfunctions.net/remote_add")
* .connection(testConnection.name())
* .maxBatchingRows("10")
* .userDefinedContext(Map.of("z", "1.5"))
* .build())
* .build());
* }
* }
* ```
* ```yaml
* resources:
* test:
* type: gcp:bigquery:Dataset
* properties:
* datasetId: dataset_id
* testConnection:
* type: gcp:bigquery:Connection
* name: test
* properties:
* connectionId: connection_id
* location: US
* cloudResource: {}
* remoteFunction:
* type: gcp:bigquery:Routine
* name: remote_function
* properties:
* datasetId: ${test.datasetId}
* routineId: routine_id
* routineType: SCALAR_FUNCTION
* definitionBody: ""
* returnType: '{"typeKind" : "STRING"}'
* remoteFunctionOptions:
* endpoint: https://us-east1-my_gcf_project.cloudfunctions.net/remote_add
* connection: ${testConnection.name}
* maxBatchingRows: '10'
* userDefinedContext:
* z: '1.5'
* ```
*
* ## Import
* Routine can be imported using any of these accepted formats:
* * `projects/{{project}}/datasets/{{dataset_id}}/routines/{{routine_id}}`
* * `{{project}}/{{dataset_id}}/{{routine_id}}`
* * `{{dataset_id}}/{{routine_id}}`
* When using the `pulumi import` command, Routine can be imported using one of the formats above. For example:
* ```sh
* $ pulumi import gcp:bigquery/routine:Routine default projects/{{project}}/datasets/{{dataset_id}}/routines/{{routine_id}}
* ```
* ```sh
* $ pulumi import gcp:bigquery/routine:Routine default {{project}}/{{dataset_id}}/{{routine_id}}
* ```
* ```sh
* $ pulumi import gcp:bigquery/routine:Routine default {{dataset_id}}/{{routine_id}}
* ```
* @property arguments Input/output argument of a function or a stored procedure.
* Structure is documented below.
* @property dataGovernanceType If set to DATA_MASKING, the function is validated and made available as a masking function. For more information, see https://cloud.google.com/bigquery/docs/user-defined-functions#custom-mask
* Possible values are: `DATA_MASKING`.
* @property datasetId The ID of the dataset containing this routine
* @property definitionBody The body of the routine. For functions, this is the expression in the AS clause.
* If language=SQL, it is the substring inside (but excluding) the parentheses.
* - - -
* @property description The description of the routine if defined.
* @property determinismLevel The determinism level of the JavaScript UDF if defined.
* Possible values are: `DETERMINISM_LEVEL_UNSPECIFIED`, `DETERMINISTIC`, `NOT_DETERMINISTIC`.
* @property importedLibraries Optional. If language = "JAVASCRIPT", this field stores the path of the
* imported JAVASCRIPT libraries.
* @property language The language of the routine.
* Possible values are: `SQL`, `JAVASCRIPT`, `PYTHON`, `JAVA`, `SCALA`.
* @property project The ID of the project in which the resource belongs.
* If it is not provided, the provider project is used.
* @property remoteFunctionOptions Remote function specific options.
* Structure is documented below.
* @property returnTableType Optional. Can be set only if routineType = "TABLE_VALUED_FUNCTION".
* If absent, the return table type is inferred from definitionBody at query time in each query
* that references this routine. If present, then the columns in the evaluated table result will
* be cast to match the column types specificed in return table type, at query time.
* @property returnType A JSON schema for the return type. Optional if language = "SQL"; required otherwise.
* If absent, the return type is inferred from definitionBody at query time in each query
* that references this routine. If present, then the evaluated result will be cast to
* the specified returned type at query time. ~>**NOTE**: Because this field expects a JSON
* string, any changes to the string will create a diff, even if the JSON itself hasn't
* changed. If the API returns a different value for the same schema, e.g. it switche
* d the order of values or replaced STRUCT field type with RECORD field type, we currently
* cannot suppress the recurring diff this causes. As a workaround, we recommend using
* the schema as returned by the API.
* @property routineId The ID of the the routine. The ID must contain only letters (a-z, A-Z), numbers (0-9), or underscores (_). The maximum length is 256 characters.
* @property routineType The type of routine.
* Possible values are: `SCALAR_FUNCTION`, `PROCEDURE`, `TABLE_VALUED_FUNCTION`.
* @property sparkOptions Optional. If language is one of "PYTHON", "JAVA", "SCALA", this field stores the options for spark stored procedure.
* Structure is documented below.
*/
public data class RoutineArgs(
public val arguments: Output>? = null,
public val dataGovernanceType: Output? = null,
public val datasetId: Output? = null,
public val definitionBody: Output? = null,
public val description: Output? = null,
public val determinismLevel: Output? = null,
public val importedLibraries: Output>? = null,
public val language: Output? = null,
public val project: Output? = null,
public val remoteFunctionOptions: Output? = null,
public val returnTableType: Output? = null,
public val returnType: Output? = null,
public val routineId: Output? = null,
public val routineType: Output? = null,
public val sparkOptions: Output? = null,
) : ConvertibleToJava {
override fun toJava(): com.pulumi.gcp.bigquery.RoutineArgs =
com.pulumi.gcp.bigquery.RoutineArgs.builder()
.arguments(
arguments?.applyValue({ args0 ->
args0.map({ args0 ->
args0.let({ args0 ->
args0.toJava()
})
})
}),
)
.dataGovernanceType(dataGovernanceType?.applyValue({ args0 -> args0 }))
.datasetId(datasetId?.applyValue({ args0 -> args0 }))
.definitionBody(definitionBody?.applyValue({ args0 -> args0 }))
.description(description?.applyValue({ args0 -> args0 }))
.determinismLevel(determinismLevel?.applyValue({ args0 -> args0 }))
.importedLibraries(importedLibraries?.applyValue({ args0 -> args0.map({ args0 -> args0 }) }))
.language(language?.applyValue({ args0 -> args0 }))
.project(project?.applyValue({ args0 -> args0 }))
.remoteFunctionOptions(
remoteFunctionOptions?.applyValue({ args0 ->
args0.let({ args0 ->
args0.toJava()
})
}),
)
.returnTableType(returnTableType?.applyValue({ args0 -> args0 }))
.returnType(returnType?.applyValue({ args0 -> args0 }))
.routineId(routineId?.applyValue({ args0 -> args0 }))
.routineType(routineType?.applyValue({ args0 -> args0 }))
.sparkOptions(sparkOptions?.applyValue({ args0 -> args0.let({ args0 -> args0.toJava() }) })).build()
}
/**
* Builder for [RoutineArgs].
*/
@PulumiTagMarker
public class RoutineArgsBuilder internal constructor() {
private var arguments: Output>? = null
private var dataGovernanceType: Output? = null
private var datasetId: Output? = null
private var definitionBody: Output? = null
private var description: Output? = null
private var determinismLevel: Output? = null
private var importedLibraries: Output>? = null
private var language: Output? = null
private var project: Output? = null
private var remoteFunctionOptions: Output? = null
private var returnTableType: Output? = null
private var returnType: Output? = null
private var routineId: Output? = null
private var routineType: Output? = null
private var sparkOptions: Output? = null
/**
* @param value Input/output argument of a function or a stored procedure.
* Structure is documented below.
*/
@JvmName("keqemyrfwfvnxpti")
public suspend fun arguments(`value`: Output>) {
this.arguments = value
}
@JvmName("alysxqpbnmlqggxb")
public suspend fun arguments(vararg values: Output) {
this.arguments = Output.all(values.asList())
}
/**
* @param values Input/output argument of a function or a stored procedure.
* Structure is documented below.
*/
@JvmName("cydxkrdbhsxjwari")
public suspend fun arguments(values: List
© 2015 - 2025 Weber Informatics LLC | Privacy Policy