All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.pulumi.gcp.compute.kotlin.outputs.AutoscalerAutoscalingPolicyCpuUtilization.kt Maven / Gradle / Ivy

Go to download

Build cloud applications and infrastructure by combining the safety and reliability of infrastructure as code with the power of the Kotlin programming language.

There is a newer version: 8.13.1.0
Show newest version
@file:Suppress("NAME_SHADOWING", "DEPRECATION")

package com.pulumi.gcp.compute.kotlin.outputs

import kotlin.Double
import kotlin.String
import kotlin.Suppress

/**
 *
 * @property predictiveMethod Indicates whether predictive autoscaling based on CPU metric is enabled. Valid values are:
 * - NONE (default). No predictive method is used. The autoscaler scales the group to meet current demand based on real-time metrics.
 * - OPTIMIZE_AVAILABILITY. Predictive autoscaling improves availability by monitoring daily and weekly load patterns and scaling out ahead of anticipated demand.
 * @property target The target CPU utilization that the autoscaler should maintain.
 * Must be a float value in the range (0, 1]. If not specified, the
 * default is 0.6.
 * If the CPU level is below the target utilization, the autoscaler
 * scales down the number of instances until it reaches the minimum
 * number of instances you specified or until the average CPU of
 * your instances reaches the target utilization.
 * If the average CPU is above the target utilization, the autoscaler
 * scales up until it reaches the maximum number of instances you
 * specified or until the average utilization reaches the target
 * utilization.
 */
public data class AutoscalerAutoscalingPolicyCpuUtilization(
    public val predictiveMethod: String? = null,
    public val target: Double,
) {
    public companion object {
        public fun toKotlin(javaType: com.pulumi.gcp.compute.outputs.AutoscalerAutoscalingPolicyCpuUtilization): AutoscalerAutoscalingPolicyCpuUtilization = AutoscalerAutoscalingPolicyCpuUtilization(
            predictiveMethod = javaType.predictiveMethod().map({ args0 -> args0 }).orElse(null),
            target = javaType.target(),
        )
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy