Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright (c) 2008, 2014, Oracle and/or its affiliates.
* All rights reserved. Use is subject to license terms.
*
* This file is available and licensed under the following license:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the distribution.
* - Neither the name of Oracle Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package ensemble.samples.charts.area.curvefitted;
import javafx.collections.ObservableList;
import javafx.geometry.Point2D;
import javafx.scene.Group;
import javafx.scene.chart.AreaChart;
import javafx.scene.chart.NumberAxis;
import javafx.scene.chart.XYChart;
import javafx.scene.shape.ClosePath;
import javafx.scene.shape.CubicCurveTo;
import javafx.scene.shape.LineTo;
import javafx.scene.shape.MoveTo;
import javafx.scene.shape.Path;
import javafx.scene.shape.PathElement;
import javafx.util.Pair;
public class CurveFittedAreaChart extends AreaChart {
public CurveFittedAreaChart(NumberAxis xAxis, NumberAxis yAxis) {
super(xAxis, yAxis);
}
@Override protected void layoutPlotChildren() {
super.layoutPlotChildren();
for (int seriesIndex = 0; seriesIndex < getDataSize(); seriesIndex++) {
final XYChart.Series series = getData().get(seriesIndex);
final Path seriesLine = (Path) ((Group) series.getNode()).getChildren().get(1);
final Path fillPath = (Path) ((Group) series.getNode()).getChildren().get(0);
smooth(seriesLine.getElements(), fillPath.getElements());
}
}
private int getDataSize() {
final ObservableList> data = getData();
return (data != null) ? data.size() : 0;
}
private static void smooth(ObservableList strokeElements, ObservableList fillElements) {
// as we do not have direct access to the data, first recreate the list of all the data points we have
final Point2D[] dataPoints = new Point2D[strokeElements.size()];
for (int i = 0; i < strokeElements.size(); i++) {
final PathElement element = strokeElements.get(i);
if (element instanceof MoveTo) {
final MoveTo move = (MoveTo) element;
dataPoints[i] = new Point2D(move.getX(), move.getY());
} else if (element instanceof LineTo) {
final LineTo line = (LineTo) element;
final double x = line.getX(), y = line.getY();
dataPoints[i] = new Point2D(x, y);
}
}
// next we need to know the zero Y value
final double zeroY = ((MoveTo) fillElements.get(0)).getY();
// now clear and rebuild elements
strokeElements.clear();
fillElements.clear();
Pair result = calcCurveControlPoints(dataPoints);
Point2D[] firstControlPoints = result.getKey();
Point2D[] secondControlPoints = result.getValue();
// start both paths
strokeElements.add(new MoveTo(dataPoints[0].getX(), dataPoints[0].getY()));
fillElements.add(new MoveTo(dataPoints[0].getX(), zeroY));
fillElements.add(new LineTo(dataPoints[0].getX(), dataPoints[0].getY()));
// add curves
for (int i = 1; i < dataPoints.length; i++) {
final int ci = i - 1;
strokeElements.add(new CubicCurveTo(
firstControlPoints[ci].getX(), firstControlPoints[ci].getY(),
secondControlPoints[ci].getX(), secondControlPoints[ci].getY(),
dataPoints[i].getX(), dataPoints[i].getY()));
fillElements.add(new CubicCurveTo(
firstControlPoints[ci].getX(), firstControlPoints[ci].getY(),
secondControlPoints[ci].getX(), secondControlPoints[ci].getY(),
dataPoints[i].getX(), dataPoints[i].getY()));
}
// end the paths
fillElements.add(new LineTo(dataPoints[dataPoints.length - 1].getX(), zeroY));
fillElements.add(new ClosePath());
}
/**
* Calculate open-ended Bezier Spline Control Points.
*
* @param dataPoints Input data Bezier spline points.
* @return The spline points
*/
public static Pair calcCurveControlPoints(Point2D[] dataPoints) {
Point2D[] firstControlPoints;
Point2D[] secondControlPoints;
int n = dataPoints.length - 1;
if (n == 1) { // Special case: Bezier curve should be a straight line.
firstControlPoints = new Point2D[1];
// 3P1 = 2P0 + P3
firstControlPoints[0] = new Point2D(
(2 * dataPoints[0].getX() + dataPoints[1].getX()) / 3,
(2 * dataPoints[0].getY() + dataPoints[1].getY()) / 3);
secondControlPoints = new Point2D[1];
// P2 = 2P1 – P0
secondControlPoints[0] = new Point2D(
2 * firstControlPoints[0].getX() - dataPoints[0].getX(),
2 * firstControlPoints[0].getY() - dataPoints[0].getY());
return new Pair(firstControlPoints, secondControlPoints);
}
// Calculate first Bezier control points
// Right hand side vector
double[] rhs = new double[n];
// Set right hand side X values
for (int i = 1; i < n - 1; ++i) {
rhs[i] = 4 * dataPoints[i].getX() + 2 * dataPoints[i + 1].getX();
}
rhs[0] = dataPoints[0].getX() + 2 * dataPoints[1].getX();
rhs[n - 1] = (8 * dataPoints[n - 1].getX() + dataPoints[n].getX()) / 2.0;
// Get first control points X-values
double[] x = GetFirstControlPoints(rhs);
// Set right hand side Y values
for (int i = 1; i < n - 1; ++i) {
rhs[i] = 4 * dataPoints[i].getY() + 2 * dataPoints[i + 1].getY();
}
rhs[0] = dataPoints[0].getY() + 2 * dataPoints[1].getY();
rhs[n - 1] = (8 * dataPoints[n - 1].getY() + dataPoints[n].getY()) / 2.0;
// Get first control points Y-values
double[] y = GetFirstControlPoints(rhs);
// Fill output arrays.
firstControlPoints = new Point2D[n];
secondControlPoints = new Point2D[n];
for (int i = 0; i < n; ++i) {
// First control point
firstControlPoints[i] = new Point2D(x[i], y[i]);
// Second control point
if (i < n - 1) {
secondControlPoints[i] = new Point2D(2 * dataPoints[i + 1].getX() - x[i + 1], 2
* dataPoints[i + 1].getY() - y[i + 1]);
} else {
secondControlPoints[i] = new Point2D((dataPoints[n].getX() + x[n - 1]) / 2,
(dataPoints[n].getY() + y[n - 1]) / 2);
}
}
return new Pair(firstControlPoints, secondControlPoints);
}
/**
* Solves a tridiagonal system for one of coordinates (x or y) of first
* Bezier control points.
*
* @param rhs Right hand side vector.
* @return Solution vector.
*/
private static double[] GetFirstControlPoints(double[] rhs) {
int n = rhs.length;
double[] x = new double[n]; // Solution vector.
double[] tmp = new double[n]; // Temp workspace.
double b = 2.0;
x[0] = rhs[0] / b;
for (int i = 1; i < n; i++) {// Decomposition and forward substitution.
tmp[i] = 1 / b;
b = (i < n - 1 ? 4.0 : 3.5) - tmp[i];
x[i] = (rhs[i] - x[i - 1]) / b;
}
for (int i = 1; i < n; i++) {
x[n - i - 1] -= tmp[n - i] * x[n - i]; // Backsubstitution.
}
return x;
}
}