All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.wildfly.security.ssl.CipherSuiteSelector Maven / Gradle / Ivy

There is a newer version: 2.4.1.Final
Show newest version
/*
 * JBoss, Home of Professional Open Source.
 * Copyright 2014 Red Hat, Inc., and individual contributors
 * as indicated by the @author tags.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.wildfly.security.ssl;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;

import org.wildfly.common.iteration.CodePointIterator;

/**
 * An immutable filter for SSL/TLS cipher suites.
 *
 * @author David M. Lloyd
 */
public abstract class CipherSuiteSelector {

    final CipherSuiteSelector prev;

    CipherSuiteSelector(final CipherSuiteSelector prev) {
        this.prev = prev;
    }

    /* -- predicates -- */

    private static final CipherSuiteSelector EMPTY = new CipherSuiteSelector(null) {
        void applyFilter(final Set enabled, final Map supported) {
        }

        void toString(final StringBuilder b) {
            b.append("(empty)");
        }
    };

    private static final CipherSuiteSelector TLS13_EMPTY = new CipherSuiteSelector(null) {
        void applyFilter(final Set enabled, final Map supported) {
        }

        void toString(final StringBuilder b) {
            b.append("(empty)");
        }

        MechanismDatabase getMechanismDatabase() {
            return MechanismDatabase.getTLS13Instance();
        }
    };

    /**
     * Get the basic empty SSL cipher suite selector.
     *
     * @return the empty selector
     */
    public static CipherSuiteSelector empty() {
        return EMPTY;
    }

    /**
     * Get the basic empty SSL cipher suite selector.
     *
     * @param useTLS13 {@code true} if the TLSv1.3 mechanism database should be used by this selector and {@code false} otherwise
     * @return the empty selector
     */
    public static CipherSuiteSelector empty(final boolean useTLS13) {
        return useTLS13 ? TLS13_EMPTY : EMPTY;
    }

    /**
     * OpenSSL default cipher suites for TLSv1.3.
     */
    public static final String OPENSSL_DEFAULT_CIPHER_SUITE_NAMES = "TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_128_GCM_SHA256";

    static final CipherSuiteSelector OPENSSL_ALL = empty().add(CipherSuitePredicate.matchOpenSslAll());
    static final CipherSuiteSelector OPENSSL_DEFAULT = openSslAll().deleteFully(CipherSuitePredicate.matchOpenSslDefaultDeletes());
    // OpenSSL default cipher suites for TLSv1.3
    static final CipherSuiteSelector OPENSSL_DEFAULT_CIPHER_SUITES = CipherSuiteSelector.fromNamesString(OPENSSL_DEFAULT_CIPHER_SUITE_NAMES);
    static final CipherSuiteSelector OPENSSL_COMBINED_DEFAULT = aggregate(OPENSSL_DEFAULT_CIPHER_SUITES, OPENSSL_DEFAULT);

    /**
     * Get the cipher selector which OpenSSL defines as {@code DEFAULT}.
     *
     * @return the selector
     * @see CipherSuitePredicate#matchOpenSslDefaultDeletes()
     */
    public static CipherSuiteSelector openSslDefault() {
        return OPENSSL_DEFAULT;
    }

    /**
     * Get the cipher selector which OpenSSL defines as {@code ALL}.
     *
     * @return the selector
     * @see CipherSuitePredicate#matchOpenSslAll()
     */
    public static CipherSuiteSelector openSslAll() {
        return OPENSSL_ALL;
    }

    /**
     * Get the cipher selector which OpenSSL defines as the default cipher suites for TLSv1.3.
     *
     * @return the selector
     */
    public static CipherSuiteSelector openSslDefaultCipherSuites() {
        return OPENSSL_DEFAULT_CIPHER_SUITES;
    }

    /**
     * Get the cipher selector which OpenSSL defines as {@code DEFAULT} combined with the
     * cipher suites which OpenSSL defines as the default cipher suites for TLSv1.3.
     *
     * @return the selector
     */
    public static CipherSuiteSelector openSslCombinedDefault() {
        return OPENSSL_COMBINED_DEFAULT;
    }



    /* -- delete -- */

    /**
     * Permanently delete all cipher suites which are matched by the given predicate.  Matching ciphers cannot
     * be re-added by a later rule (such rules will be ignored).
     *
     * @param predicate the predicate to match
     * @return a new selector which includes the new rule
     */
    public CipherSuiteSelector deleteFully(final CipherSuitePredicate predicate) {
        return predicate == null ? this : new FullyDeletingCipherSuiteSelector(this, predicate);
    }

    /**
     * A convenience method to permanently delete a cipher suite by name.  This is a shortcut for calling
     * {@code deleteFully(Predicate.matchName(cipherSuiteName))}.  The cipher suite name must be a standard or OpenSSL-style
     * mechanism name identifying a single mechanism.
     *
     * @param cipherSuiteName the cipher suite name
     * @return a new selector which includes the new rule
     */
    public CipherSuiteSelector deleteFully(final String cipherSuiteName) {
        return deleteFully(CipherSuitePredicate.matchName(cipherSuiteName));
    }

    /* -- remove -- */

    /**
     * Remove all cipher suites which are matched by the given predicate.  Matching ciphers may be re-added by a later
     * rule.
     *
     * @param predicate the predicate to match
     * @return a new selector which includes the new rule
     */
    public CipherSuiteSelector remove(final CipherSuitePredicate predicate) {
        return predicate == null || predicate.isAlwaysFalse() ? this : new RemovingCipherSuiteSelector(this, predicate);
    }

    /**
     * A convenience method to remove a cipher suite by name.  This is a shortcut for calling
     * {@code remove(Predicate.matchName(cipherSuiteName))}.  The cipher suite name must be a standard or OpenSSL-style
     * mechanism name identifying a single mechanism.
     *
     * @param cipherSuiteName the cipher suite name
     * @return a new selector which includes the new rule
     */
    public CipherSuiteSelector remove(final String cipherSuiteName) {
        return remove(CipherSuitePredicate.matchName(cipherSuiteName));
    }

    /* -- add -- */

    /**
     * Add all cipher suites which are matched by the given predicate.  The cipher suites are added in a reasonably
     * logical order.  Any suites which are not supported by the underlying socket layer will not be added.
     *
     * @param predicate the predicate to match
     * @return a new selector which includes the new rule
     */
    public CipherSuiteSelector add(final CipherSuitePredicate predicate) {
        return predicate == null || predicate.isAlwaysFalse() ? this : new AddingCipherSuiteSelector(this, predicate);
    }

    /**
     * A convenience method to add a cipher suite by name.  If the underlying socket layer does not support the named
     * cipher suite, or if the cipher suite is invalid, it will not be added.  This is a shortcut for calling
     * {@code add(Predicate.matchName(cipherSuiteName))}.  The cipher suite name must be a standard or OpenSSL-style
     * mechanism name identifying a single mechanism.
     *
     * @param cipherSuiteName the cipher suite name
     * @return a new selector which includes the new rule
     */
    public CipherSuiteSelector add(final String cipherSuiteName) {
        return add(CipherSuitePredicate.matchName(cipherSuiteName));
    }

    /* -- push to end -- */

    /**
     * Push all cipher suites which are matched by the given predicate to the end of the enabled ciphers list.  Only
     * cipher suites which are already enabled will be moved; no cipher suites are added by this transformation.
     *
     * @param predicate the predicate to match
     * @return a new selector which includes the new rule
     */
    public CipherSuiteSelector pushToEnd(final CipherSuitePredicate predicate) {
        return predicate == null || predicate.isAlwaysFalse() || predicate.isAlwaysTrue() ? this : new PushToEndCipherSuiteSelector(this, predicate);
    }

    /**
     * A convenience method to push a cipher suite by name to the end of the enabled ciphers list.  This is a shortcut
     * for calling {@code pushToEnd(Predicate.matchName(cipherSuiteName))}.  In particular, no cipher suites are added
     * by this transformation.  The cipher suite name must be a standard or OpenSSL-style mechanism name identifying a
     * single mechanism.
     *
     * @param cipherSuiteName the cipher suite name
     * @return a new selector which includes the new rule
     */
    public CipherSuiteSelector pushToEnd(final String cipherSuiteName) {
        return pushToEnd(CipherSuitePredicate.matchName(cipherSuiteName));
    }

    /**
     * Sort all of the enabled ciphers by decreasing key length.  Only the ciphers which were added by previous rules
     * will be sorted.
     *
     * @return a new selector which includes the sort
     */
    public CipherSuiteSelector sortByAlgorithmKeyLength() {
        return new SortByAlgorithmKeyLengthCipherSuiteSelector(this);
    }

    public final String toString() {
        StringBuilder b = new StringBuilder();
        toString(b);
        return b.toString();
    }

    abstract void toString(StringBuilder b);

    /* -- selector implementation -- */

    abstract void applyFilter(Set enabled, Map supported);

    private void doEvaluate(Set enabled, Map supported) {
        if (prev != null) {
            prev.doEvaluate(enabled, supported);
        }
        applyFilter(enabled, supported);
    }

    MechanismDatabase getMechanismDatabase() {
        if (prev != null) {
            return prev.getMechanismDatabase();
        }
        return MechanismDatabase.getInstance();
    }

    /**
     * Evaluate this selector against the given list of JSSE supported mechanisms.
     *
     * @param supportedMechanisms the supported mechanisms
     * @return the enabled mechanisms (not {@code null})
     */
    public String[] evaluate(String[] supportedMechanisms) {
        if (ElytronMessages.tls.isTraceEnabled()) {
            StringBuilder b = new StringBuilder(supportedMechanisms.length * 16);
            b.append("Evaluating filter \"").append(this).append("\" on supported mechanisms:");
            for (String s : supportedMechanisms) {
                b.append("\n    ").append(s);
            }
            ElytronMessages.tls.trace(b);
        }
        final MechanismDatabase database = getMechanismDatabase();
        final LinkedHashMap supportedMap = new LinkedHashMap<>(supportedMechanisms.length);
        for (String supportedMechanism : supportedMechanisms) {
            final MechanismDatabase.Entry entry = database.getCipherSuite(supportedMechanism);
            if (entry != null) {
                ElytronMessages.tls.tracef("Found supported mechanism %s", supportedMechanism);
                supportedMap.put(entry, supportedMechanism);
            } else {
                ElytronMessages.tls.tracef("Dropping unknown mechanism %s", supportedMechanism);
            }
        }
        final LinkedHashSet enabledSet = new LinkedHashSet(supportedMap.size());
        doEvaluate(enabledSet, supportedMap);
        return enabledSet.toArray(new String[enabledSet.size()]);
    }

    /**
     * Create a cipher suite selector from the given OpenSSL-style cipher list string.  The rules of the string are as
     * follows:
     * 
    *
  • Each item is separated from the other items by a colon (":"), though for compatibility, commas (",") or * spaces (" ") are allowed delimiters as well.
  • *
  • The items are evaluated in order from left to right.
  • *
  • * Each item may consist of one of the following: *
      *
    • An OpenSSL-style cipher suite name like {@code DH-RSA-AES256-SHA256}, which adds the named cipher suite to the end of the list (if it is supported and not already present).
    • *
    • A standard SSL/TLS cipher suite name like {@code TLS_DH_RSA_WITH_AES_256_CBC_SHA256}, which adds the named cipher suite to the end of the list (if it is supported and not already present).
    • *
    • * Any of the following special keywords: *
        *
      • {@code HIGH}, which matches all supported cipher suites with "high" encryption, presently defined * as all cipher suites with key lengths larger than 128 bits, and some with key lengths * of exactly 128 bits (see {@link SecurityLevel#HIGH}).
      • *
      • {@code MEDIUM}, which matches all supported cipher suites with "medium" encryption, presently * defined as some cipher suites with 128 bit keys (see {@link SecurityLevel#MEDIUM}).
      • *
      • {@code LOW}, which matches all supported cipher suites with "low" encryption, presently defined * as cipher suites which use 64- or 56-bit encryption but excluding export cipher suites * (see {@link SecurityLevel#LOW}).
      • *
      • {@code EXP} or {@code EXPORT}, which matches supported cipher suites using export algorithms, presently defined as * cipher suites which include those that use 56- or 40-bit encryption algorithms (see * {@link SecurityLevel#EXP40} and {@link SecurityLevel#EXP56})
      • . *
      • {@code EXPORT40}, which matches supported cipher suites using export algorithms with 40-bit encryption (see {@link SecurityLevel#EXP40}).
      • *
      • {@code EXPORT56}, which matches supported cipher suites using export algorithms with 56-bit encryption (see {@link SecurityLevel#EXP56}).
      • *
      • {@code eNULL} or {@code NULL}, which matches supported cipher suites without encryption (see {@link Encryption#NULL}).
      • *
      • {@code aNULL}, which matches supported cipher suites without authentication (i.e. they are anonymous) (see {@link Authentication#NULL}).
      • *
      • {@code kRSA}, which matches supported cipher suites using RSA key exchange (see {@link KeyAgreement#RSA}).
      • *
      • {@code aRSA}, which matches supported cipher suites using RSA authentication (see {@link Authentication#RSA}).
      • *
      • {@code RSA}, which matches supported cipher suites using either RSA key exchange or RSA authentication.
      • *
      • {@code kDHr}, which matches supported cipher suites using DH key agreement with DH certificates signed with a RSA key (see {@link KeyAgreement#DHr}).
      • *
      • {@code kDHd}, which matches supported cipher suites using DH key agreement with DH certificates signed with a DSS key (see {@link KeyAgreement#DHd}).
      • *
      • {@code kDH}, which matches any supported cipher suite using DH key agreement.
      • *
      • {@code kDHE} or {@code kEDH}, which matches supported cipher suites using ephemeral DH key agreement (including anonymous cipher suites; see {@link KeyAgreement#DHE}).
      • *
      • {@code DHE} or {@code EDH}, which matches supported cipher suites using non-anonymous ephemeral DH key agreement.
      • *
      • {@code ADH}, which matches supported cipher suites using anonymous DH, not including anonymous elliptic curve suites.
      • *
      • {@code DH}, which matches any supported cipher suite using DH.
      • *
      • {@code kECDHr}, which matches supported cipher suites using fixed ECDH key agreement signed using RSA keys (see {@link KeyAgreement#ECDHr}).
      • *
      • {@code kECDHe}, which matches supported cipher suites using fixed ECDH key agreement signed by ECDSA keys (see {@link KeyAgreement#ECDHe}).
      • *
      • {@code kECDH}, which matches supported cipher suites using fixed ECDH key agreement.
      • *
      • {@code kEECDH} or {@code kECDHE}, which matches supported cipher suites using ephemeral ECDH key agreement (including anonymous cipher suites; see {@link KeyAgreement#ECDHE}).
      • *
      • {@code ECDHE} or {@code EECDHE}, which matches supported cipher suites using authenticated (non-anonymous) ephemeral ECDH key agreement.
      • *
      • {@code AECDH}, which matches supported cipher suites using anonymous ephemeral ECDH key agreement.
      • *
      • {@code ECDH}, which matches all supported cipher suites using ECDH key agreement.
      • *
      • {@code aDSS} or {@code DSS}, which matches supported cipher suites using DSS authentication (see {@link Authentication#DSS}).
      • *
      • {@code aDH}, which matches supported cipher suites using DH authentication (see {@link Authentication#DH}).
      • *
      • {@code aECDH}, which matches supported cipher suites using ECDH authentication (see {@link Authentication#ECDH}).
      • *
      • {@code aECDSA} or {@code ECDSA}, which matches supported cipher suites using ECDSA authentication (see {@link Authentication#ECDSA}).
      • *
      • {@code kFZA}, which matches supported cipher suites using Fortezza key agreement (see {@link KeyAgreement#FZA}).
      • *
      • {@code aFZA}, which matches supported cipher suites using Fortezza authentication (see {@link Authentication#FZA}).
      • *
      • {@code eFZA}, which matches supported cipher suites using Fortezza encryption (see {@link Encryption#FZA}).
      • *
      • {@code FZA}, which matches all supported cipher suites using any Fortezza algorithm.
      • *
      • {@code TLSv1.2}, which matches supported cipher suites defined in TLS v1.2 (see {@link Protocol#TLSv1_2}).
      • *
      • {@code TLSv1}, which matches supported cipher suites defined in TLS v1 (see {@link Protocol#TLSv1}).
      • *
      • {@code SSLv3}, which matches supported cipher suites defined in SSL v3.0 (see {@link Protocol#SSLv3}).
      • *
      • {@code SSLv2}, which matches supported cipher suites defined in SSL v2.0 (see {@link Protocol#SSLv2}).
      • *
      • {@code AES256}, which matches supported cipher suites using 256-bit AES (see {@link Encryption#AES256}).
      • *
      • {@code AES128}, which matches supported cipher suites using 128-bit AES (see {@link Encryption#AES128}).
      • *
      • {@code AES}, which matches all supported cipher suites using AES.
      • *
      • {@code AESGCM}, which matches supported cipher suites using AES in Galois Counter Mode (GCM) (see {@link Encryption#AES256GCM} and {@link Encryption#AES128GCM}).
      • *
      • {@code CAMELLIA256}, which matches supported cipher suites using 256-bit Camellia encryption (see {@link Encryption#CAMELLIA256}).
      • *
      • {@code CAMELLIA128}, which matches supported cipher suites using 128-bit Camellia encryption (see {@link Encryption#CAMELLIA128}).
      • *
      • {@code CAMELLIA}, which matches all supported cipher suites using any Camellia encryption.
      • *
      • {@code 3DES}, which matches supported cipher suites using triple DES encryption (see {@link Encryption#_3DES}).
      • *
      • {@code DES}, which matches supported cipher suites using plain DES encryption (see {@link Encryption#DES}).
      • *
      • {@code RC4}, which matches supported cipher suites using RC4 encryption (see {@link Encryption#RC4}).
      • *
      • {@code RC2}, which matches supported cipher suites using RC2 encryption (see {@link Encryption#RC2}).
      • *
      • {@code IDEA}, which matches supported cipher suites using IDEA encryption (see {@link Encryption#IDEA}).
      • *
      • {@code SEED}, which matches supported cipher suites using SEED encryption (see {@link Encryption#SEED}).
      • *
      • {@code MD5}, which matches supported cipher suites using the MD5 digest algorithm (see {@link Digest#MD5}).
      • *
      • {@code SHA1} or {@code SHA}, which matches supported cipher suites using the SHA-1 digest algorithm (see {@link Digest#SHA1}).
      • *
      • {@code SHA256}, which matches supported cipher suites using the SHA-256 digest algorithm (see {@link Digest#SHA256}).
      • *
      • {@code SHA384}, which matches supported cipher suites using the SHA-384 digest algorithm (see {@link Digest#SHA384}).
      • *
      • {@code aGOST}, which matches supported cipher suites using GOST authentication.
      • *
      • {@code aGOST01}, which matches supported cipher suites using GOST R 34.10-2001 authentication (see {@link Authentication#GOST01}).
      • *
      • {@code aGOST94}, which matches supported cipher suites using GOST R 34.10-94 authentication (see {@link Authentication#GOST94}).
      • *
      • {@code kGOST}, which matches supported cipher suites using VKO 34.10 key exchange (see {@link KeyAgreement#GOST}).
      • *
      • {@code GOST94}, which matches supported cipher suites using GOST R 34.11-94 based HMAC (see {@link Digest#GOST94}).
      • *
      • {@code GOST89MAC}, which matches supported cipher suites using GOST 28147-89 based MAC (not HMAC) (see {@link Digest#GOST89MAC}).
      • *
      • {@code kPSK}, which matches supported cipher suites using pre-shared keys key agreement (see {@link KeyAgreement#PSK}).
      • *
      • {@code aPSK}, which matches supported cipher suites using pre-shared keys authentication (see {@link Authentication#PSK}).
      • *
      • {@code PSK}, which matches supported cipher suites using pre-shared keys (see {@link Authentication#PSK} and {@link KeyAgreement#PSK}).
      • *
      • {@code RSAPSK} or {@code kRSAPSK}, which matches supported cipher suites using RSA-based pre-shared keys (see {@link KeyAgreement#RSAPSK}).
      • *
      • {@code kEDHPSK}, {@code kDHEPSK}, {@code EDHPSK} or {@code DHEPSK}, which matches supported cipher suites using ephemeral DH-based pre-shared keys (see {@link KeyAgreement#DHEPSK}).
      • *
      • {@code kEECDHPSK}, {@code EECDHPSK}, {@code kECDHEPSK} or {@code ECDHEPSK}, which matches supported cipher suites using ephemeral elliptic-curve DH-based pre-shared keys (see {@link KeyAgreement#ECDHEPSK}).
      • *
      *
    • *
    • More than one of any of the above keywords or cipher suite names joined by {@code +} symbols, which * indicates that all of the items must be matched (i.e. a logical "and" operation).
    • *
    • The special unary {@code !} operator followed by any of the above keywords or cipher * names, which removes the matching cipher suite(s) from the enabled list and also deletes it from the * supported list, preventing any matching cipher suites from being re-added by a later rule.
    • *
    • The special unary {@code -} operator followed by any of the above keywords or cipher * names, which removes the matching cipher suite(s) from the enabled list (though they may still * be re-added).
    • *
    • The special unary {@code +} operator followed by any of the above keywords or cipher * names, which causes any of the matching cipher suite(s) to be moved to the end of the list * of enabled cipher suites.
    • *
    • The special {@code ALL} keyword, which includes all cipher suites (except for encryptionless * suites; in other words, this keyword implies {@code -eNULL}).
    • *
    • The special {@code COMPLEMENTOFALL} keyword, which is presently equivalent to {@code eNULL}.
    • *
    • The special {@code DEFAULT} keyword, which is equivalent to {@code ALL:!EXPORT:!LOW:!aNULL:!eNULL:!SSLv2}.
    • *
    • The special {@code COMPLEMENTOFDEFAULT} keyword, which presently includes any anonymous cipher * suites (but excludes those without encryption, which must always be enabled manually).
    • *
    • The special {@code @STRENGTH} keyword, which causes all the mechanisms enabled thus far to be * automatically sorted by encryption algorithm key length in descending order.
    • *
    *
  • *
* * @param string the string to parse * @return the parsed cipher suite selector * @throws IllegalArgumentException if the given string is not valid */ public static CipherSuiteSelector fromString(String string) throws IllegalArgumentException { final CodePointIterator i = CodePointIterator.ofString(string); CipherSuiteSelector current = empty(); CipherSuitePredicate predicate; String name; int cp; while (i.hasNext()) { cp = i.next(); switch (cp) { case '+': { current = parseMoveToEnd(current, i); break; } case '-': { current = parseRemove(current, i); break; } case '!': { current = parseDelete(current, i); break; } case '@': { current = parseSpecial(current, i); break; } case '=': { throw ElytronMessages.log.mechSelectorTokenNotAllowed("=", i.getIndex(), string); } case ',': case ':': { // skip empty break; } default: { if (Character.isWhitespace(cp)) { // skip whitespace break; } if (Character.isLetterOrDigit(cp)) { i.previous(); name = i.delimitedBy('+', ':', ',', ' ').drainToString(); predicate = parsePredicate(i, name); if (predicate != null) { current = current.add(predicate); } else { switch (name) { /* -- openssl special -- */ case "DEFAULT": current = current.add(CipherSuitePredicate.matchOpenSslAll()) .deleteFully(CipherSuitePredicate.matchOpenSslDefaultDeletes()); break; case "COMPLEMENTOFDEFAULT": current = current.add(CipherSuitePredicate.matchAnonDH()); break; case "ALL": current = current.add(CipherSuitePredicate.matchOpenSslAll()); break; case "COMPLEMENTOFALL": current = current.add(CipherSuitePredicate.matchOpenSslComplementOfAll()); break; // SUITEB not yet supported // case "SUITEB128": return null; // case "SUITEB128ONLY": return null; // case "SUITEB192": return null; default: { throw ElytronMessages.log.mechSelectorUnknownToken(name, string); } } } break; } throw ElytronMessages.log.mechSelectorUnexpectedChar(cp, i.getIndex(), string); } } // current character should be : or EOS after parse* methods } return current; } /** * Create a cipher suite selector from the given OpenSSL-style TLSv1.3 cipher suites string. The format for this string * is a simple colon (":") separated list of TLSv1.3 cipher suite names. * * @param names the string to parse * @return the parsed cipher suite selector * @throws IllegalArgumentException if the given string is not valid */ public static CipherSuiteSelector fromNamesString(String names) throws IllegalArgumentException { final CodePointIterator cpi = CodePointIterator.ofString(names); final CodePointIterator di = cpi.delimitedBy(':'); CipherSuiteSelector current = empty(true); while (cpi.hasNext()) { if (di.hasNext()) { String name = di.drainToString(); final MechanismDatabase database = MechanismDatabase.getTLS13Instance(); MechanismDatabase.Entry entry = database.getCipherSuiteOpenSSLName(name); if (entry == null) { throw ElytronMessages.log.unknownCipherSuiteName(name, names); } current = current.add(name); } else { cpi.next(); // skip the colon } } return current; } /** * Create an aggregate {@link CipherSuiteSelector}. Each cipher suite selector is executed in order. * * @param cipherSuiteSelector1 the first cipher suite selector * @param cipherSuiteSelector2 the second cipher suite selector * @return the aggregate cipher suite selector (not {@code null}) */ public static CipherSuiteSelector aggregate(final CipherSuiteSelector cipherSuiteSelector1, final CipherSuiteSelector cipherSuiteSelector2) { return new CipherSuiteSelector(null) { void toString(StringBuilder b) { if (cipherSuiteSelector1 != null && cipherSuiteSelector1 != EMPTY) { cipherSuiteSelector1.toString(b); } if (cipherSuiteSelector2 != null && cipherSuiteSelector2 != EMPTY) { cipherSuiteSelector2.toString(b); } } void applyFilter(Set enabled, Map supported) { if (cipherSuiteSelector1 != null) { cipherSuiteSelector1.applyFilter(enabled, supported); } if (cipherSuiteSelector2 != null) { cipherSuiteSelector2.applyFilter(enabled, supported); } } public String[] evaluate(String[] supportedMechanisms) { ArrayList enabledList = new ArrayList<>(); if (cipherSuiteSelector1 != null) { enabledList.addAll(Arrays.asList(cipherSuiteSelector1.evaluate(supportedMechanisms))); } if (cipherSuiteSelector2 != null) { enabledList.addAll(Arrays.asList(cipherSuiteSelector2.evaluate(supportedMechanisms))); } return enabledList.toArray(new String[enabledList.size()]); } }; } private static CipherSuiteSelector parseMoveToEnd(final CipherSuiteSelector current, final CodePointIterator i) { return current.pushToEnd(parsePredicate(i)); } private static CipherSuiteSelector parseRemove(final CipherSuiteSelector current, final CodePointIterator i) { return current.remove(parsePredicate(i)); } private static CipherSuiteSelector parseDelete(final CipherSuiteSelector current, final CodePointIterator i) { return current.deleteFully(parsePredicate(i)); } private static CipherSuiteSelector parseSpecial(final CipherSuiteSelector current, final CodePointIterator i) { String word = i.delimitedBy('=', ':').drainToString(); switch (word) { case "STRENGTH": { if (i.hasNext() && i.next() == '=') { throw ElytronMessages.log.mechSelectorTokenNotAllowed("=", i.getIndex(), i.drainToString()); } return current.sortByAlgorithmKeyLength(); } default: { throw ElytronMessages.log.mechSelectorUnknownToken(word, i.drainToString()); } } } private static CipherSuitePredicate parsePredicate(final CodePointIterator i) { return parsePredicate(i, i.delimitedBy('+', ':', ',', ' ').drainToString()); } private static CipherSuitePredicate parsePredicate(final CodePointIterator i, final String word) { CipherSuitePredicate item = getSimplePredicateByName(word); if (i.hasNext() && i.next() == '+') { if (item == null) { throw ElytronMessages.log.mechSelectorTokenNotAllowed("+", i.getIndex(), i.drainToString()); } return parseAndPredicate(item, i); } else { return item; } } private static CipherSuitePredicate parseAndPredicate(CipherSuitePredicate item, final CodePointIterator i) { final ArrayList list = new ArrayList<>(); list.add(item); do { list.add(getSimplePredicateByName(i.delimitedBy('+', ':', ',', ' ').drainToString())); } while (i.hasNext() && i.next() == '+'); return CipherSuitePredicate.matchAll(list.toArray(new CipherSuitePredicate[list.size()])); } private static CipherSuitePredicate getSimplePredicateByName(final String word) { switch (word) { /* -- openssl standard -- */ case "HIGH": return CipherSuitePredicate.matchLevel(SecurityLevel.HIGH); case "MEDIUM": return CipherSuitePredicate.matchLevel(SecurityLevel.MEDIUM); case "LOW": return CipherSuitePredicate.matchLevel(SecurityLevel.LOW); case "EXP": // synonym case "EXPORT": return CipherSuitePredicate.matchLevel(SecurityLevel.EXP40, SecurityLevel.EXP56); case "EXPORT40": return CipherSuitePredicate.matchLevel(SecurityLevel.EXP40); case "EXPORT56": return CipherSuitePredicate.matchLevel(SecurityLevel.EXP56); case "NULL": // synonym case "eNULL": return CipherSuitePredicate.matchEncryption(Encryption.NULL); case "aNULL": return CipherSuitePredicate.matchAuthentication(Authentication.NULL); case "kRSA": return CipherSuitePredicate.matchKeyAgreement(KeyAgreement.RSA); case "aRSA": return CipherSuitePredicate.matchAuthentication(Authentication.RSA); case "RSA": return CipherSuitePredicate.matchAny(CipherSuitePredicate.matchKeyAgreement(KeyAgreement.RSA), CipherSuitePredicate.matchAuthentication(Authentication.RSA)); case "kDHr": return CipherSuitePredicate.matchKeyAgreement(KeyAgreement.DHr); case "kDHd": return CipherSuitePredicate.matchKeyAgreement(KeyAgreement.DHd); case "kDH": return CipherSuitePredicate.matchKeyExchange(KeyAgreement.DHr, KeyAgreement.DHd); case "kDHE": // synonym case "kEDH": return CipherSuitePredicate.matchKeyAgreement(KeyAgreement.DHE); case "DHE": // synonym case "EDH": return CipherSuitePredicate.matchAll(CipherSuitePredicate.matchKeyAgreement(KeyAgreement.DHE), CipherSuitePredicate.matchNot(CipherSuitePredicate.matchAuthentication(Authentication.NULL))); case "ADH": return CipherSuitePredicate.matchAnonDH(); case "DH": return CipherSuitePredicate.matchAll(CipherSuitePredicate.matchKeyExchange(KeyAgreement.DHE, KeyAgreement.DHd, KeyAgreement.DHr, KeyAgreement.ECDHe, KeyAgreement.ECDHr, KeyAgreement.ECDHE), CipherSuitePredicate.matchAuthentication(Authentication.DH, Authentication.ECDH, Authentication.NULL)); case "kECDHr": return CipherSuitePredicate.matchKeyAgreement(KeyAgreement.ECDHr); case "kECDHe": return CipherSuitePredicate.matchKeyAgreement(KeyAgreement.ECDHe); case "kECDH": return CipherSuitePredicate.matchKeyExchange(KeyAgreement.ECDHe, KeyAgreement.ECDHr); case "kEECDH": // synonym case "kECDHE": return CipherSuitePredicate.matchKeyAgreement(KeyAgreement.ECDHE); case "ECDHE": // synonym case "EECDHE": return CipherSuitePredicate.matchAll(CipherSuitePredicate.matchKeyAgreement(KeyAgreement.ECDHE), CipherSuitePredicate.matchNot(CipherSuitePredicate.matchAuthentication(Authentication.NULL))); case "AECDH": return CipherSuitePredicate.matchAll(CipherSuitePredicate.matchKeyExchange(KeyAgreement.ECDHe, KeyAgreement.ECDHr, KeyAgreement.ECDHE), CipherSuitePredicate.matchAuthentication(Authentication.NULL)); case "ECDH": return CipherSuitePredicate.matchKeyExchange(KeyAgreement.ECDHe, KeyAgreement.ECDHr, KeyAgreement.ECDHE); case "DSS": // synonym case "aDSS": return CipherSuitePredicate.matchAuthentication(Authentication.DSS); case "aDH": return CipherSuitePredicate.matchAuthentication(Authentication.DH); case "aECDH": return CipherSuitePredicate.matchAuthentication(Authentication.ECDH); case "ECDSA": // synonym case "aECDSA": return CipherSuitePredicate.matchAuthentication(Authentication.ECDSA); case "kFZA": return CipherSuitePredicate.matchKeyAgreement(KeyAgreement.FZA); case "aFZA": return CipherSuitePredicate.matchAuthentication(Authentication.FZA); case "eFZA": return CipherSuitePredicate.matchEncryption(Encryption.FZA); case "FZA": return CipherSuitePredicate.matchAny(CipherSuitePredicate.matchKeyAgreement(KeyAgreement.FZA), CipherSuitePredicate.matchAuthentication(Authentication.FZA), CipherSuitePredicate.matchEncryption(Encryption.FZA)); case "TLSv1.2": return CipherSuitePredicate.matchProtocol(Protocol.TLSv1_2); case "TLSv1": return CipherSuitePredicate.matchProtocol(Protocol.TLSv1); case "SSLv3": return CipherSuitePredicate.matchProtocol(Protocol.SSLv3); case "SSLv2": return CipherSuitePredicate.matchProtocol(Protocol.SSLv2); case "AES128": return CipherSuitePredicate.matchEncryption(Encryption.AES128, Encryption.AES128GCM); case "AES256": return CipherSuitePredicate.matchEncryption(Encryption.AES256, Encryption.AES256GCM); case "AES": return CipherSuitePredicate.matchEncryption(Encryption.AES128, Encryption.AES128GCM, Encryption.AES256, Encryption.AES256GCM); case "AESGCM": return CipherSuitePredicate.matchEncryption(Encryption.AES128GCM, Encryption.AES256GCM); case "ARIA": return CipherSuitePredicate.matchEncryption(Encryption.ARIA128, Encryption.ARIA128GCM, Encryption.ARIA256, Encryption.ARIA256GCM); case "ARIA128": return CipherSuitePredicate.matchEncryption(Encryption.ARIA128, Encryption.ARIA128GCM); case "ARIA256": return CipherSuitePredicate.matchEncryption(Encryption.ARIA256, Encryption.ARIA256GCM); case "ARIAGCM": return CipherSuitePredicate.matchEncryption(Encryption.ARIA128GCM, Encryption.ARIA256GCM); case "CAMELLIA128": return CipherSuitePredicate.matchEncryption(Encryption.CAMELLIA128); case "CAMELLIA256": return CipherSuitePredicate.matchEncryption(Encryption.CAMELLIA256); case "CAMELLIA": return CipherSuitePredicate.matchEncryption(Encryption.CAMELLIA128, Encryption.CAMELLIA256); case "3DES": return CipherSuitePredicate.matchEncryption(Encryption._3DES); case "DES": return CipherSuitePredicate.matchEncryption(Encryption.DES); case "RC4": return CipherSuitePredicate.matchEncryption(Encryption.RC4); case "RC2": return CipherSuitePredicate.matchEncryption(Encryption.RC2); case "IDEA": return CipherSuitePredicate.matchEncryption(Encryption.IDEA); case "SEED": return CipherSuitePredicate.matchEncryption(Encryption.SEED); case "MD5": return CipherSuitePredicate.matchDigest(Digest.MD5); case "SHA": // synonym case "SHA1": return CipherSuitePredicate.matchDigest(Digest.SHA1); case "SHA256": return CipherSuitePredicate.matchDigest(Digest.SHA256); case "SHA384": return CipherSuitePredicate.matchDigest(Digest.SHA384); case "aGOST": return CipherSuitePredicate.matchAuthentication(Authentication.GOST01, Authentication.GOST94); case "aGOST01": return CipherSuitePredicate.matchAuthentication(Authentication.GOST01); case "aGOST94": return CipherSuitePredicate.matchAuthentication(Authentication.GOST94); case "kGOST": return CipherSuitePredicate.matchKeyAgreement(KeyAgreement.GOST); case "GOST94": return CipherSuitePredicate.matchDigest(Digest.GOST94); case "GOST89MAC": return CipherSuitePredicate.matchDigest(Digest.GOST89MAC); case "kPSK": return CipherSuitePredicate.matchKeyAgreement(KeyAgreement.PSK); case "aPSK": return CipherSuitePredicate.matchAuthentication(Authentication.PSK); case "PSK": return CipherSuitePredicate.matchAny(CipherSuitePredicate.matchAuthentication(Authentication.PSK), CipherSuitePredicate.matchKeyAgreement(KeyAgreement.PSK)); case "kRSAPSK": // synonym case "RSAPSK": return CipherSuitePredicate.matchKeyAgreement(KeyAgreement.RSAPSK); case "DHEPSK": // synonym case "EDHPSK": // synonym case "kDHEPSK": // synonym case "kEDHPSK": return CipherSuitePredicate.matchKeyAgreement(KeyAgreement.DHEPSK); case "EECDHPSK": // synonym case "kEECDHPSK": // synonym case "ECDHEPSK": // synonym case "kECDEHPSK": return CipherSuitePredicate.matchKeyAgreement(KeyAgreement.ECDHEPSK); default: { final MechanismDatabase database = MechanismDatabase.getInstance(); MechanismDatabase.Entry entry = database.getCipherSuiteOpenSSLName(word); if (entry == null) { entry = database.getCipherSuite(word); } if (entry == null) { return null; } return CipherSuitePredicate.matchName(word); } } } /* -- selector impls -- */ static final class AddingCipherSuiteSelector extends CipherSuiteSelector { private final CipherSuitePredicate predicate; AddingCipherSuiteSelector(final CipherSuiteSelector next, final CipherSuitePredicate predicate) { super(next); this.predicate = predicate; } void applyFilter(final Set enabled, final Map supported) { for (Map.Entry item : supported.entrySet()) { final MechanismDatabase.Entry entry = item.getKey(); if (predicate.test(entry)) { if (enabled.add(item.getValue())) { ElytronMessages.tls.tracef("Adding cipher suite %s due to add rule", entry); } else { ElytronMessages.tls.tracef("Would have added cipher suite %s due to add rule, but it was already added previously", entry); } } } } void toString(final StringBuilder b) { if (prev != null && prev != EMPTY) { prev.toString(b); b.append(", then "); } b.append("add "); predicate.toString(b); } } static final class RemovingCipherSuiteSelector extends CipherSuiteSelector { private final CipherSuitePredicate predicate; RemovingCipherSuiteSelector(final CipherSuiteSelector next, final CipherSuitePredicate predicate) { super(next); this.predicate = predicate; } void applyFilter(final Set enabled, final Map supported) { for (Map.Entry item : supported.entrySet()) { final MechanismDatabase.Entry entry = item.getKey(); if (predicate.test(entry)) { if (enabled.remove(item.getValue())) { ElytronMessages.tls.tracef("Removing cipher suite %s due to remove rule", entry); } else { ElytronMessages.tls.tracef("Would have removed cipher suite %s due to remove rule, but it already wasn't present", entry); } } } } void toString(final StringBuilder b) { if (prev != null && prev != EMPTY) { prev.toString(b); b.append(", then "); } b.append("remove "); predicate.toString(b); } } static final class FullyDeletingCipherSuiteSelector extends CipherSuiteSelector { private final CipherSuitePredicate predicate; FullyDeletingCipherSuiteSelector(final CipherSuiteSelector next, final CipherSuitePredicate predicate) { super(next); this.predicate = predicate; } void applyFilter(final Set enabled, final Map supported) { Iterator> iterator = supported.entrySet().iterator(); while (iterator.hasNext()) { final Map.Entry item = iterator.next(); final MechanismDatabase.Entry entry = item.getKey(); if (predicate.test(entry)) { iterator.remove(); enabled.remove(item.getValue()); ElytronMessages.tls.tracef("Fully removing cipher suite %s due to full remove rule", entry); } } } void toString(final StringBuilder b) { if (prev != null && prev != EMPTY) { prev.toString(b); b.append(", then "); } b.append("remove fully "); predicate.toString(b); } } static final class PushToEndCipherSuiteSelector extends CipherSuiteSelector { private final CipherSuitePredicate predicate; PushToEndCipherSuiteSelector(final CipherSuiteSelector next, final CipherSuitePredicate predicate) { super(next); this.predicate = predicate; } void applyFilter(final Set enabled, final Map supported) { final MechanismDatabase database = MechanismDatabase.getInstance(); final Iterator iterator = enabled.iterator(); List pushed = null; while (iterator.hasNext()) { final String name = iterator.next(); final MechanismDatabase.Entry entry = database.getCipherSuite(name); if (predicate.test(entry)) { if (pushed == null) pushed = new ArrayList<>(); pushed.add(name); iterator.remove(); ElytronMessages.tls.tracef("Pushing cipher suite %s to end due to push rule", entry); } } if (pushed != null) { // add back in order enabled.addAll(pushed); } } void toString(final StringBuilder b) { if (prev != null && prev != EMPTY) { prev.toString(b); b.append(", then "); } b.append("push to end "); predicate.toString(b); } } static final class SortByAlgorithmKeyLengthCipherSuiteSelector extends CipherSuiteSelector { SortByAlgorithmKeyLengthCipherSuiteSelector(final CipherSuiteSelector prev) { super(prev); } void applyFilter(final Set enabled, final Map supported) { if (! enabled.isEmpty()) { final ArrayList list = new ArrayList<>(enabled); // stable sort Collections.sort(list, (o1, o2) -> { final MechanismDatabase database = MechanismDatabase.getInstance(); final MechanismDatabase.Entry e1 = database.getCipherSuite(o1); final MechanismDatabase.Entry e2 = database.getCipherSuite(o2); return Integer.signum(e2.getAlgorithmBits() - e1.getAlgorithmBits()); }); enabled.clear(); enabled.addAll(list); if (ElytronMessages.tls.isTraceEnabled()) { StringBuilder b = new StringBuilder(list.size() * 16); b.append("Sorted ciphers by algorithm key length, result is:"); for (String s : list) { b.append("\n ").append(s); } ElytronMessages.tls.trace(b); } } } void toString(final StringBuilder b) { if (prev != null && prev != EMPTY) { prev.toString(b); b.append(", then "); } b.append("sort by key length"); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy