All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.netty.util.concurrent.SingleThreadEventExecutor Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

There is a newer version: 35.0.0.Beta1
Show newest version
/*
 * Copyright 2012 The Netty Project
 *
 * The Netty Project licenses this file to you under the Apache License,
 * version 2.0 (the "License"); you may not use this file except in compliance
 * with the License. You may obtain a copy of the License at:
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 */
package io.netty.util.concurrent;

import io.netty.util.internal.PlatformDependent;
import io.netty.util.internal.logging.InternalLogger;
import io.netty.util.internal.logging.InternalLoggerFactory;

import java.util.ArrayList;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Queue;
import java.util.Set;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.RejectedExecutionException;
import java.util.concurrent.Semaphore;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicIntegerFieldUpdater;

/**
 * Abstract base class for {@link EventExecutor}'s that execute all its submitted tasks in a single thread.
 *
 */
public abstract class SingleThreadEventExecutor extends AbstractScheduledEventExecutor {

    private static final InternalLogger logger =
            InternalLoggerFactory.getInstance(SingleThreadEventExecutor.class);

    private static final int ST_NOT_STARTED = 1;
    private static final int ST_STARTED = 2;
    private static final int ST_SHUTTING_DOWN = 3;
    private static final int ST_SHUTDOWN = 4;
    private static final int ST_TERMINATED = 5;

    private static final Runnable WAKEUP_TASK = new Runnable() {
        @Override
        public void run() {
            // Do nothing.
        }
    };

    private static final AtomicIntegerFieldUpdater STATE_UPDATER;

    static {
        AtomicIntegerFieldUpdater updater =
                PlatformDependent.newAtomicIntegerFieldUpdater(SingleThreadEventExecutor.class, "state");
        if (updater == null) {
            updater = AtomicIntegerFieldUpdater.newUpdater(SingleThreadEventExecutor.class, "state");
        }
        STATE_UPDATER = updater;
    }

    private final EventExecutorGroup parent;
    private final Queue taskQueue;
    private final Thread thread;
    private final Semaphore threadLock = new Semaphore(0);
    private final Set shutdownHooks = new LinkedHashSet();
    private final boolean addTaskWakesUp;

    private long lastExecutionTime;

    @SuppressWarnings({ "FieldMayBeFinal", "unused" })
    private volatile int state = ST_NOT_STARTED;

    private volatile long gracefulShutdownQuietPeriod;
    private volatile long gracefulShutdownTimeout;
    private long gracefulShutdownStartTime;

    private final Promise terminationFuture = new DefaultPromise(GlobalEventExecutor.INSTANCE);

    /**
     * Create a new instance
     *
     * @param parent            the {@link EventExecutorGroup} which is the parent of this instance and belongs to it
     * @param threadFactory     the {@link ThreadFactory} which will be used for the used {@link Thread}
     * @param addTaskWakesUp    {@code true} if and only if invocation of {@link #addTask(Runnable)} will wake up the
     *                          executor thread
     */
    protected SingleThreadEventExecutor(
            EventExecutorGroup parent, ThreadFactory threadFactory, boolean addTaskWakesUp) {

        if (threadFactory == null) {
            throw new NullPointerException("threadFactory");
        }

        this.parent = parent;
        this.addTaskWakesUp = addTaskWakesUp;

        thread = threadFactory.newThread(new Runnable() {
            @Override
            public void run() {
                boolean success = false;
                updateLastExecutionTime();
                try {
                    SingleThreadEventExecutor.this.run();
                    success = true;
                } catch (Throwable t) {
                    logger.warn("Unexpected exception from an event executor: ", t);
                } finally {
                    for (;;) {
                        int oldState = STATE_UPDATER.get(SingleThreadEventExecutor.this);
                        if (oldState >= ST_SHUTTING_DOWN || STATE_UPDATER.compareAndSet(
                                SingleThreadEventExecutor.this, oldState, ST_SHUTTING_DOWN)) {
                            break;
                        }
                    }
                    // Check if confirmShutdown() was called at the end of the loop.
                    if (success && gracefulShutdownStartTime == 0) {
                        logger.error(
                                "Buggy " + EventExecutor.class.getSimpleName() + " implementation; " +
                                SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must be called " +
                                "before run() implementation terminates.");
                    }

                    try {
                        // Run all remaining tasks and shutdown hooks.
                        for (;;) {
                            if (confirmShutdown()) {
                                break;
                            }
                        }
                    } finally {
                        try {
                            cleanup();
                        } finally {
                            STATE_UPDATER.set(SingleThreadEventExecutor.this, ST_TERMINATED);
                            threadLock.release();
                            if (!taskQueue.isEmpty()) {
                                logger.warn(
                                        "An event executor terminated with " +
                                        "non-empty task queue (" + taskQueue.size() + ')');
                            }

                            terminationFuture.setSuccess(null);
                        }
                    }
                }
            }
        });

        taskQueue = newTaskQueue();
    }

    /**
     * Create a new {@link Queue} which will holds the tasks to execute. This default implementation will return a
     * {@link LinkedBlockingQueue} but if your sub-class of {@link SingleThreadEventExecutor} will not do any blocking
     * calls on the this {@link Queue} it may make sense to {@code @Override} this and return some more performant
     * implementation that does not support blocking operations at all.
     */
    protected Queue newTaskQueue() {
        return new LinkedBlockingQueue();
    }

    @Override
    public EventExecutorGroup parent() {
        return parent;
    }

    /**
     * Interrupt the current running {@link Thread}.
     */
    protected void interruptThread() {
        thread.interrupt();
    }

    /**
     * @see {@link Queue#poll()}
     */
    protected Runnable pollTask() {
        assert inEventLoop();
        for (;;) {
            Runnable task = taskQueue.poll();
            if (task == WAKEUP_TASK) {
                continue;
            }
            return task;
        }
    }

    /**
     * Take the next {@link Runnable} from the task queue and so will block if no task is currently present.
     * 

* Be aware that this method will throw an {@link UnsupportedOperationException} if the task queue, which was * created via {@link #newTaskQueue()}, does not implement {@link BlockingQueue}. *

* * @return {@code null} if the executor thread has been interrupted or waken up. */ protected Runnable takeTask() { assert inEventLoop(); if (!(taskQueue instanceof BlockingQueue)) { throw new UnsupportedOperationException(); } BlockingQueue taskQueue = (BlockingQueue) this.taskQueue; for (;;) { ScheduledFutureTask scheduledTask = peekScheduledTask(); if (scheduledTask == null) { Runnable task = null; try { task = taskQueue.take(); if (task == WAKEUP_TASK) { task = null; } } catch (InterruptedException e) { // Ignore } return task; } else { long delayNanos = scheduledTask.delayNanos(); Runnable task = null; if (delayNanos > 0) { try { task = taskQueue.poll(delayNanos, TimeUnit.NANOSECONDS); } catch (InterruptedException e) { return null; } } if (task == null) { // We need to fetch the scheduled tasks now as otherwise there may be a chance that // scheduled tasks are never executed if there is always one task in the taskQueue. // This is for example true for the read task of OIO Transport // See https://github.com/netty/netty/issues/1614 fetchFromScheduledTaskQueue(); task = taskQueue.poll(); } if (task != null) { return task; } } } } private void fetchFromScheduledTaskQueue() { if (hasScheduledTasks()) { long nanoTime = AbstractScheduledEventExecutor.nanoTime(); for (;;) { Runnable scheduledTask = pollScheduledTask(nanoTime); if (scheduledTask == null) { break; } taskQueue.add(scheduledTask); } } } /** * @see {@link Queue#peek()} */ protected Runnable peekTask() { assert inEventLoop(); return taskQueue.peek(); } /** * @see {@link Queue#isEmpty()} */ protected boolean hasTasks() { assert inEventLoop(); return !taskQueue.isEmpty(); } /** * Return the number of tasks that are pending for processing. * * Be aware that this operation may be expensive as it depends on the internal implementation of the * SingleThreadEventExecutor. So use it was care! */ public final int pendingTasks() { return taskQueue.size(); } /** * Add a task to the task queue, or throws a {@link RejectedExecutionException} if this instance was shutdown * before. */ protected void addTask(Runnable task) { if (task == null) { throw new NullPointerException("task"); } if (isShutdown()) { reject(); } taskQueue.add(task); } /** * @see {@link Queue#remove(Object)} */ protected boolean removeTask(Runnable task) { if (task == null) { throw new NullPointerException("task"); } return taskQueue.remove(task); } /** * Poll all tasks from the task queue and run them via {@link Runnable#run()} method. * * @return {@code true} if and only if at least one task was run */ protected boolean runAllTasks() { fetchFromScheduledTaskQueue(); Runnable task = pollTask(); if (task == null) { return false; } for (;;) { try { task.run(); } catch (Throwable t) { logger.warn("A task raised an exception.", t); } task = pollTask(); if (task == null) { lastExecutionTime = ScheduledFutureTask.nanoTime(); return true; } } } /** * Poll all tasks from the task queue and run them via {@link Runnable#run()} method. This method stops running * the tasks in the task queue and returns if it ran longer than {@code timeoutNanos}. */ protected boolean runAllTasks(long timeoutNanos) { fetchFromScheduledTaskQueue(); Runnable task = pollTask(); if (task == null) { return false; } final long deadline = ScheduledFutureTask.nanoTime() + timeoutNanos; long runTasks = 0; long lastExecutionTime; for (;;) { try { task.run(); } catch (Throwable t) { logger.warn("A task raised an exception.", t); } runTasks ++; // Check timeout every 64 tasks because nanoTime() is relatively expensive. // XXX: Hard-coded value - will make it configurable if it is really a problem. if ((runTasks & 0x3F) == 0) { lastExecutionTime = ScheduledFutureTask.nanoTime(); if (lastExecutionTime >= deadline) { break; } } task = pollTask(); if (task == null) { lastExecutionTime = ScheduledFutureTask.nanoTime(); break; } } this.lastExecutionTime = lastExecutionTime; return true; } /** * Returns the amount of time left until the scheduled task with the closest dead line is executed. */ protected long delayNanos(long currentTimeNanos) { ScheduledFutureTask scheduledTask = peekScheduledTask(); if (scheduledTask == null) { return SCHEDULE_PURGE_INTERVAL; } return scheduledTask.delayNanos(currentTimeNanos); } /** * Updates the internal timestamp that tells when a submitted task was executed most recently. * {@link #runAllTasks()} and {@link #runAllTasks(long)} updates this timestamp automatically, and thus there's * usually no need to call this method. However, if you take the tasks manually using {@link #takeTask()} or * {@link #pollTask()}, you have to call this method at the end of task execution loop for accurate quiet period * checks. */ protected void updateLastExecutionTime() { lastExecutionTime = ScheduledFutureTask.nanoTime(); } /** * */ protected abstract void run(); /** * Do nothing, sub-classes may override */ protected void cleanup() { // NOOP } protected void wakeup(boolean inEventLoop) { if (!inEventLoop || STATE_UPDATER.get(this) == ST_SHUTTING_DOWN) { taskQueue.add(WAKEUP_TASK); } } @Override public boolean inEventLoop(Thread thread) { return thread == this.thread; } /** * Add a {@link Runnable} which will be executed on shutdown of this instance */ public void addShutdownHook(final Runnable task) { if (inEventLoop()) { shutdownHooks.add(task); } else { execute(new Runnable() { @Override public void run() { shutdownHooks.add(task); } }); } } /** * Remove a previous added {@link Runnable} as a shutdown hook */ public void removeShutdownHook(final Runnable task) { if (inEventLoop()) { shutdownHooks.remove(task); } else { execute(new Runnable() { @Override public void run() { shutdownHooks.remove(task); } }); } } private boolean runShutdownHooks() { boolean ran = false; // Note shutdown hooks can add / remove shutdown hooks. while (!shutdownHooks.isEmpty()) { List copy = new ArrayList(shutdownHooks); shutdownHooks.clear(); for (Runnable task: copy) { try { task.run(); } catch (Throwable t) { logger.warn("Shutdown hook raised an exception.", t); } finally { ran = true; } } } if (ran) { lastExecutionTime = ScheduledFutureTask.nanoTime(); } return ran; } @Override public Future shutdownGracefully(long quietPeriod, long timeout, TimeUnit unit) { if (quietPeriod < 0) { throw new IllegalArgumentException("quietPeriod: " + quietPeriod + " (expected >= 0)"); } if (timeout < quietPeriod) { throw new IllegalArgumentException( "timeout: " + timeout + " (expected >= quietPeriod (" + quietPeriod + "))"); } if (unit == null) { throw new NullPointerException("unit"); } if (isShuttingDown()) { return terminationFuture(); } boolean inEventLoop = inEventLoop(); boolean wakeup; int oldState; for (;;) { if (isShuttingDown()) { return terminationFuture(); } int newState; wakeup = true; oldState = STATE_UPDATER.get(this); if (inEventLoop) { newState = ST_SHUTTING_DOWN; } else { switch (oldState) { case ST_NOT_STARTED: case ST_STARTED: newState = ST_SHUTTING_DOWN; break; default: newState = oldState; wakeup = false; } } if (STATE_UPDATER.compareAndSet(this, oldState, newState)) { break; } } gracefulShutdownQuietPeriod = unit.toNanos(quietPeriod); gracefulShutdownTimeout = unit.toNanos(timeout); if (oldState == ST_NOT_STARTED) { thread.start(); } if (wakeup) { wakeup(inEventLoop); } return terminationFuture(); } @Override public Future terminationFuture() { return terminationFuture; } @Override @Deprecated public void shutdown() { if (isShutdown()) { return; } boolean inEventLoop = inEventLoop(); boolean wakeup; int oldState; for (;;) { if (isShuttingDown()) { return; } int newState; wakeup = true; oldState = STATE_UPDATER.get(this); if (inEventLoop) { newState = ST_SHUTDOWN; } else { switch (oldState) { case ST_NOT_STARTED: case ST_STARTED: case ST_SHUTTING_DOWN: newState = ST_SHUTDOWN; break; default: newState = oldState; wakeup = false; } } if (STATE_UPDATER.compareAndSet(this, oldState, newState)) { break; } } if (oldState == ST_NOT_STARTED) { thread.start(); } if (wakeup) { wakeup(inEventLoop); } } @Override public boolean isShuttingDown() { return STATE_UPDATER.get(this) >= ST_SHUTTING_DOWN; } @Override public boolean isShutdown() { return STATE_UPDATER.get(this) >= ST_SHUTDOWN; } @Override public boolean isTerminated() { return STATE_UPDATER.get(this) == ST_TERMINATED; } /** * Confirm that the shutdown if the instance should be done now! */ protected boolean confirmShutdown() { if (!isShuttingDown()) { return false; } if (!inEventLoop()) { throw new IllegalStateException("must be invoked from an event loop"); } cancelScheduledTasks(); if (gracefulShutdownStartTime == 0) { gracefulShutdownStartTime = ScheduledFutureTask.nanoTime(); } if (runAllTasks() || runShutdownHooks()) { if (isShutdown()) { // Executor shut down - no new tasks anymore. return true; } // There were tasks in the queue. Wait a little bit more until no tasks are queued for the quiet period. wakeup(true); return false; } final long nanoTime = ScheduledFutureTask.nanoTime(); if (isShutdown() || nanoTime - gracefulShutdownStartTime > gracefulShutdownTimeout) { return true; } if (nanoTime - lastExecutionTime <= gracefulShutdownQuietPeriod) { // Check if any tasks were added to the queue every 100ms. // TODO: Change the behavior of takeTask() so that it returns on timeout. wakeup(true); try { Thread.sleep(100); } catch (InterruptedException e) { // Ignore } return false; } // No tasks were added for last quiet period - hopefully safe to shut down. // (Hopefully because we really cannot make a guarantee that there will be no execute() calls by a user.) return true; } @Override public boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException { if (unit == null) { throw new NullPointerException("unit"); } if (inEventLoop()) { throw new IllegalStateException("cannot await termination of the current thread"); } if (threadLock.tryAcquire(timeout, unit)) { threadLock.release(); } return isTerminated(); } @Override public void execute(Runnable task) { if (task == null) { throw new NullPointerException("task"); } boolean inEventLoop = inEventLoop(); if (inEventLoop) { addTask(task); } else { startThread(); addTask(task); if (isShutdown() && removeTask(task)) { reject(); } } if (!addTaskWakesUp && wakesUpForTask(task)) { wakeup(inEventLoop); } } @SuppressWarnings("unused") protected boolean wakesUpForTask(Runnable task) { return true; } protected static void reject() { throw new RejectedExecutionException("event executor terminated"); } // ScheduledExecutorService implementation private static final long SCHEDULE_PURGE_INTERVAL = TimeUnit.SECONDS.toNanos(1); private void startThread() { if (STATE_UPDATER.get(this) == ST_NOT_STARTED) { if (STATE_UPDATER.compareAndSet(this, ST_NOT_STARTED, ST_STARTED)) { schedule(new ScheduledFutureTask( this, Executors.callable(new PurgeTask(), null), ScheduledFutureTask.deadlineNanos(SCHEDULE_PURGE_INTERVAL), -SCHEDULE_PURGE_INTERVAL)); thread.start(); } } } private final class PurgeTask implements Runnable { @Override public void run() { purgeCancelledScheduledTasks(); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy