All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.netty.buffer.ByteBufUtil Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

There is a newer version: 35.0.0.Beta1
Show newest version
/*
 * Copyright 2012 The Netty Project
 *
 * The Netty Project licenses this file to you under the Apache License,
 * version 2.0 (the "License"); you may not use this file except in compliance
 * with the License. You may obtain a copy of the License at:
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 */
package io.netty.buffer;

import io.netty.util.CharsetUtil;
import io.netty.util.Recycler;
import io.netty.util.Recycler.Handle;
import io.netty.util.internal.PlatformDependent;
import io.netty.util.internal.SystemPropertyUtil;
import io.netty.util.internal.logging.InternalLogger;
import io.netty.util.internal.logging.InternalLoggerFactory;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.CharBuffer;
import java.nio.charset.CharacterCodingException;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;
import java.nio.charset.CharsetEncoder;
import java.nio.charset.CoderResult;
import java.util.Locale;

/**
 * A collection of utility methods that is related with handling {@link ByteBuf}.
 */
public final class ByteBufUtil {

    private static final InternalLogger logger = InternalLoggerFactory.getInstance(ByteBufUtil.class);

    private static final char[] HEXDUMP_TABLE = new char[256 * 4];

    static final ByteBufAllocator DEFAULT_ALLOCATOR;

    private static final int THREAD_LOCAL_BUFFER_SIZE;

    static {
        final char[] DIGITS = "0123456789abcdef".toCharArray();
        for (int i = 0; i < 256; i ++) {
            HEXDUMP_TABLE[ i << 1     ] = DIGITS[i >>> 4 & 0x0F];
            HEXDUMP_TABLE[(i << 1) + 1] = DIGITS[i       & 0x0F];
        }

        String allocType = SystemPropertyUtil.get("io.netty.allocator.type", "unpooled").toLowerCase(Locale.US).trim();
        ByteBufAllocator alloc;
        if ("unpooled".equals(allocType)) {
            alloc = UnpooledByteBufAllocator.DEFAULT;
            logger.debug("-Dio.netty.allocator.type: {}", allocType);
        } else if ("pooled".equals(allocType)) {
            alloc = PooledByteBufAllocator.DEFAULT;
            logger.debug("-Dio.netty.allocator.type: {}", allocType);
        } else {
            alloc = UnpooledByteBufAllocator.DEFAULT;
            logger.debug("-Dio.netty.allocator.type: unpooled (unknown: {})", allocType);
        }

        DEFAULT_ALLOCATOR = alloc;

        THREAD_LOCAL_BUFFER_SIZE = SystemPropertyUtil.getInt("io.netty.threadLocalDirectBufferSize", 64 * 1024);
        logger.debug("-Dio.netty.threadLocalDirectBufferSize: {}", THREAD_LOCAL_BUFFER_SIZE);
    }

    /**
     * Returns a hex dump
     * of the specified buffer's readable bytes.
     */
    public static String hexDump(ByteBuf buffer) {
        return hexDump(buffer, buffer.readerIndex(), buffer.readableBytes());
    }

    /**
     * Returns a hex dump
     * of the specified buffer's sub-region.
     */
    public static String hexDump(ByteBuf buffer, int fromIndex, int length) {
        if (length < 0) {
            throw new IllegalArgumentException("length: " + length);
        }
        if (length == 0) {
            return "";
        }

        int endIndex = fromIndex + length;
        char[] buf = new char[length << 1];

        int srcIdx = fromIndex;
        int dstIdx = 0;
        for (; srcIdx < endIndex; srcIdx ++, dstIdx += 2) {
            System.arraycopy(
                    HEXDUMP_TABLE, buffer.getUnsignedByte(srcIdx) << 1,
                    buf, dstIdx, 2);
        }

        return new String(buf);
    }

    /**
     * Calculates the hash code of the specified buffer.  This method is
     * useful when implementing a new buffer type.
     */
    public static int hashCode(ByteBuf buffer) {
        final int aLen = buffer.readableBytes();
        final int intCount = aLen >>> 2;
        final int byteCount = aLen & 3;

        int hashCode = 1;
        int arrayIndex = buffer.readerIndex();
        if (buffer.order() == ByteOrder.BIG_ENDIAN) {
            for (int i = intCount; i > 0; i --) {
                hashCode = 31 * hashCode + buffer.getInt(arrayIndex);
                arrayIndex += 4;
            }
        } else {
            for (int i = intCount; i > 0; i --) {
                hashCode = 31 * hashCode + swapInt(buffer.getInt(arrayIndex));
                arrayIndex += 4;
            }
        }

        for (int i = byteCount; i > 0; i --) {
            hashCode = 31 * hashCode + buffer.getByte(arrayIndex ++);
        }

        if (hashCode == 0) {
            hashCode = 1;
        }

        return hashCode;
    }

    /**
     * Returns {@code true} if and only if the two specified buffers are
     * identical to each other as described in {@code ChannelBuffer#equals(Object)}.
     * This method is useful when implementing a new buffer type.
     */
    public static boolean equals(ByteBuf bufferA, ByteBuf bufferB) {
        final int aLen = bufferA.readableBytes();
        if (aLen != bufferB.readableBytes()) {
            return false;
        }

        final int longCount = aLen >>> 3;
        final int byteCount = aLen & 7;

        int aIndex = bufferA.readerIndex();
        int bIndex = bufferB.readerIndex();

        if (bufferA.order() == bufferB.order()) {
            for (int i = longCount; i > 0; i --) {
                if (bufferA.getLong(aIndex) != bufferB.getLong(bIndex)) {
                    return false;
                }
                aIndex += 8;
                bIndex += 8;
            }
        } else {
            for (int i = longCount; i > 0; i --) {
                if (bufferA.getLong(aIndex) != swapLong(bufferB.getLong(bIndex))) {
                    return false;
                }
                aIndex += 8;
                bIndex += 8;
            }
        }

        for (int i = byteCount; i > 0; i --) {
            if (bufferA.getByte(aIndex) != bufferB.getByte(bIndex)) {
                return false;
            }
            aIndex ++;
            bIndex ++;
        }

        return true;
    }

    /**
     * Compares the two specified buffers as described in {@link ByteBuf#compareTo(ByteBuf)}.
     * This method is useful when implementing a new buffer type.
     */
    public static int compare(ByteBuf bufferA, ByteBuf bufferB) {
        final int aLen = bufferA.readableBytes();
        final int bLen = bufferB.readableBytes();
        final int minLength = Math.min(aLen, bLen);
        final int uintCount = minLength >>> 2;
        final int byteCount = minLength & 3;

        int aIndex = bufferA.readerIndex();
        int bIndex = bufferB.readerIndex();

        if (bufferA.order() == bufferB.order()) {
            for (int i = uintCount; i > 0; i --) {
                long va = bufferA.getUnsignedInt(aIndex);
                long vb = bufferB.getUnsignedInt(bIndex);
                if (va > vb) {
                    return 1;
                }
                if (va < vb) {
                    return -1;
                }
                aIndex += 4;
                bIndex += 4;
            }
        } else {
            for (int i = uintCount; i > 0; i --) {
                long va = bufferA.getUnsignedInt(aIndex);
                long vb = swapInt(bufferB.getInt(bIndex)) & 0xFFFFFFFFL;
                if (va > vb) {
                    return 1;
                }
                if (va < vb) {
                    return -1;
                }
                aIndex += 4;
                bIndex += 4;
            }
        }

        for (int i = byteCount; i > 0; i --) {
            short va = bufferA.getUnsignedByte(aIndex);
            short vb = bufferB.getUnsignedByte(bIndex);
            if (va > vb) {
                return 1;
            }
            if (va < vb) {
                return -1;
            }
            aIndex ++;
            bIndex ++;
        }

        return aLen - bLen;
    }

    /**
     * The default implementation of {@link ByteBuf#indexOf(int, int, byte)}.
     * This method is useful when implementing a new buffer type.
     */
    public static int indexOf(ByteBuf buffer, int fromIndex, int toIndex, byte value) {
        if (fromIndex <= toIndex) {
            return firstIndexOf(buffer, fromIndex, toIndex, value);
        } else {
            return lastIndexOf(buffer, fromIndex, toIndex, value);
        }
    }

    /**
     * Toggles the endianness of the specified 16-bit short integer.
     */
    public static short swapShort(short value) {
        return Short.reverseBytes(value);
    }

    /**
     * Toggles the endianness of the specified 24-bit medium integer.
     */
    public static int swapMedium(int value) {
        int swapped = value << 16 & 0xff0000 | value & 0xff00 | value >>> 16 & 0xff;
        if ((swapped & 0x800000) != 0) {
            swapped |= 0xff000000;
        }
        return swapped;
    }

    /**
     * Toggles the endianness of the specified 32-bit integer.
     */
    public static int swapInt(int value) {
        return Integer.reverseBytes(value);
    }

    /**
     * Toggles the endianness of the specified 64-bit long integer.
     */
    public static long swapLong(long value) {
        return Long.reverseBytes(value);
    }

    /**
     * Read the given amount of bytes into a new {@link ByteBuf} that is allocated from the {@link ByteBufAllocator}.
     */
    public static ByteBuf readBytes(ByteBufAllocator alloc, ByteBuf buffer, int length) {
        boolean release = true;
        ByteBuf dst = alloc.buffer(length);
        try {
            buffer.readBytes(dst);
            release = false;
            return dst;
        } finally {
            if (release) {
                dst.release();
            }
        }
    }

    private static int firstIndexOf(ByteBuf buffer, int fromIndex, int toIndex, byte value) {
        fromIndex = Math.max(fromIndex, 0);
        if (fromIndex >= toIndex || buffer.capacity() == 0) {
            return -1;
        }

        for (int i = fromIndex; i < toIndex; i ++) {
            if (buffer.getByte(i) == value) {
                return i;
            }
        }

        return -1;
    }

    private static int lastIndexOf(ByteBuf buffer, int fromIndex, int toIndex, byte value) {
        fromIndex = Math.min(fromIndex, buffer.capacity());
        if (fromIndex < 0 || buffer.capacity() == 0) {
            return -1;
        }

        for (int i = fromIndex - 1; i >= toIndex; i --) {
            if (buffer.getByte(i) == value) {
                return i;
            }
        }

        return -1;
    }

    /**
     * Encode a {@link CharSequence} in UTF-8 and write
     * it to a {@link ByteBuf}.
     *
     * This method returns the actual number of bytes written.
     */
    public static int writeUtf8(ByteBuf buf, CharSequence seq) {
        if (buf == null) {
            throw new NullPointerException("buf");
        }
        if (seq == null) {
            throw new NullPointerException("seq");
        }
        // UTF-8 uses max. 3 bytes per char, so calculate the worst case.
        final int len = seq.length();
        final int maxSize = len * 3;
        buf.ensureWritable(maxSize);
        if (buf instanceof AbstractByteBuf) {
            // Fast-Path
            AbstractByteBuf buffer = (AbstractByteBuf) buf;
            int oldWriterIndex = buffer.writerIndex;
            int writerIndex = oldWriterIndex;

            // We can use the _set methods as these not need to do any index checks and reference checks.
            // This is possible as we called ensureWritable(...) before.
            for (int i = 0; i < len; i++) {
                char c = seq.charAt(i);
                if (c < 0x80) {
                    buffer._setByte(writerIndex++, (byte) c);
                } else if (c < 0x800) {
                    buffer._setByte(writerIndex++, (byte) (0xc0 | (c >> 6)));
                    buffer._setByte(writerIndex++, (byte) (0x80 | (c & 0x3f)));
                } else {
                    buffer._setByte(writerIndex++, (byte) (0xe0 | (c >> 12)));
                    buffer._setByte(writerIndex++, (byte) (0x80 | ((c >> 6) & 0x3f)));
                    buffer._setByte(writerIndex++, (byte) (0x80 | (c & 0x3f)));
                }
            }
            // update the writerIndex without any extra checks for performance reasons
            buffer.writerIndex = writerIndex;
            return writerIndex - oldWriterIndex;
        } else {
            // Maybe we could also check if we can unwrap() to access the wrapped buffer which
            // may be an AbstractByteBuf. But this may be overkill so let us keep it simple for now.
            byte[] bytes = seq.toString().getBytes(CharsetUtil.UTF_8);
            buf.writeBytes(bytes);
            return bytes.length;
        }
    }

    /**
     * Encode a {@link CharSequence} in ASCII and write it
     * to a {@link ByteBuf}.
     *
     * This method returns the actual number of bytes written.
     */
    public static int writeAscii(ByteBuf buf, CharSequence seq) {
        if (buf == null) {
            throw new NullPointerException("buf");
        }
        if (seq == null) {
            throw new NullPointerException("seq");
        }
        // ASCII uses 1 byte per char
        final int len = seq.length();
        buf.ensureWritable(len);
        if (buf instanceof AbstractByteBuf) {
            // Fast-Path
            AbstractByteBuf buffer = (AbstractByteBuf) buf;
            int writerIndex = buffer.writerIndex;

            // We can use the _set methods as these not need to do any index checks and reference checks.
            // This is possible as we called ensureWritable(...) before.
            for (int i = 0; i < len; i++) {
                buffer._setByte(writerIndex++, (byte) seq.charAt(i));
            }
            // update the writerIndex without any extra checks for performance reasons
            buffer.writerIndex = writerIndex;
        } else {
            // Maybe we could also check if we can unwrap() to access the wrapped buffer which
            // may be an AbstractByteBuf. But this may be overkill so let us keep it simple for now.
            buf.writeBytes(seq.toString().getBytes(CharsetUtil.US_ASCII));
        }
        return len;
    }

    /**
     * Encode the given {@link CharBuffer} using the given {@link Charset} into a new {@link ByteBuf} which
     * is allocated via the {@link ByteBufAllocator}.
     */
    public static ByteBuf encodeString(ByteBufAllocator alloc, CharBuffer src, Charset charset) {
        return encodeString0(alloc, false, src, charset);
    }

    static ByteBuf encodeString0(ByteBufAllocator alloc, boolean enforceHeap, CharBuffer src, Charset charset) {
        final CharsetEncoder encoder = CharsetUtil.getEncoder(charset);
        int length = (int) ((double) src.remaining() * encoder.maxBytesPerChar());
        boolean release = true;
        final ByteBuf dst;
        if (enforceHeap) {
            dst = alloc.heapBuffer(length);
        } else {
            dst = alloc.buffer(length);
        }
        try {
            final ByteBuffer dstBuf = dst.internalNioBuffer(0, length);
            final int pos = dstBuf.position();
            CoderResult cr = encoder.encode(src, dstBuf, true);
            if (!cr.isUnderflow()) {
                cr.throwException();
            }
            cr = encoder.flush(dstBuf);
            if (!cr.isUnderflow()) {
                cr.throwException();
            }
            dst.writerIndex(dst.writerIndex() + dstBuf.position() - pos);
            release = false;
            return dst;
        } catch (CharacterCodingException x) {
            throw new IllegalStateException(x);
        } finally {
            if (release) {
                dst.release();
            }
        }
    }

    static String decodeString(ByteBuffer src, Charset charset) {
        final CharsetDecoder decoder = CharsetUtil.getDecoder(charset);
        final CharBuffer dst = CharBuffer.allocate(
                (int) ((double) src.remaining() * decoder.maxCharsPerByte()));
        try {
            CoderResult cr = decoder.decode(src, dst, true);
            if (!cr.isUnderflow()) {
                cr.throwException();
            }
            cr = decoder.flush(dst);
            if (!cr.isUnderflow()) {
                cr.throwException();
            }
        } catch (CharacterCodingException x) {
            throw new IllegalStateException(x);
        }
        return dst.flip().toString();
    }

    /**
     * Returns a cached thread-local direct buffer, if available.
     *
     * @return a cached thread-local direct buffer, if available.  {@code null} otherwise.
     */
    public static ByteBuf threadLocalDirectBuffer() {
        if (THREAD_LOCAL_BUFFER_SIZE <= 0) {
            return null;
        }

        if (PlatformDependent.hasUnsafe()) {
            return ThreadLocalUnsafeDirectByteBuf.newInstance();
        } else {
            return ThreadLocalDirectByteBuf.newInstance();
        }
    }

    static final class ThreadLocalUnsafeDirectByteBuf extends UnpooledUnsafeDirectByteBuf {

        private static final Recycler RECYCLER =
                new Recycler() {
                    @Override
                    protected ThreadLocalUnsafeDirectByteBuf newObject(Handle handle) {
                        return new ThreadLocalUnsafeDirectByteBuf(handle);
                    }
                };

        static ThreadLocalUnsafeDirectByteBuf newInstance() {
            ThreadLocalUnsafeDirectByteBuf buf = RECYCLER.get();
            buf.setRefCnt(1);
            return buf;
        }

        private final Handle handle;

        private ThreadLocalUnsafeDirectByteBuf(Handle handle) {
            super(UnpooledByteBufAllocator.DEFAULT, 256, Integer.MAX_VALUE);
            this.handle = handle;
        }

        @Override
        protected void deallocate() {
            if (capacity() > THREAD_LOCAL_BUFFER_SIZE) {
                super.deallocate();
            } else {
                clear();
                RECYCLER.recycle(this, handle);
            }
        }
    }

    static final class ThreadLocalDirectByteBuf extends UnpooledDirectByteBuf {

        private static final Recycler RECYCLER = new Recycler() {
            @Override
            protected ThreadLocalDirectByteBuf newObject(Handle handle) {
                return new ThreadLocalDirectByteBuf(handle);
            }
        };

        static ThreadLocalDirectByteBuf newInstance() {
            ThreadLocalDirectByteBuf buf = RECYCLER.get();
            buf.setRefCnt(1);
            return buf;
        }

        private final Handle handle;

        private ThreadLocalDirectByteBuf(Handle handle) {
            super(UnpooledByteBufAllocator.DEFAULT, 256, Integer.MAX_VALUE);
            this.handle = handle;
        }

        @Override
        protected void deallocate() {
            if (capacity() > THREAD_LOCAL_BUFFER_SIZE) {
                super.deallocate();
            } else {
                clear();
                RECYCLER.recycle(this, handle);
            }
        }
    }

    private ByteBufUtil() { }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy