All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.util.concurrent.JdkFutureAdapters Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

There is a newer version: 35.0.0.Final
Show newest version
/*
 * Copyright (C) 2009 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.util.concurrent;

import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.util.concurrent.Uninterruptibles.getUninterruptibly;

import com.google.common.annotations.Beta;

import java.util.concurrent.Executor;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.atomic.AtomicBoolean;

/**
 * Utilities necessary for working with libraries that supply plain {@link
 * Future} instances. Note that, whenver possible, it is strongly preferred to
 * modify those libraries to return {@code ListenableFuture} directly.
 *
 * @author Sven Mawson
 * @since 10.0 (replacing {@code Futures.makeListenable}, which
 *     existed in 1.0)
 */
@Beta
public final class JdkFutureAdapters {
  /**
   * Assigns a thread to the given {@link Future} to provide {@link
   * ListenableFuture} functionality.
   *
   * 

Warning: If the input future does not already implement {@code * ListenableFuture}, the returned future will emulate {@link * ListenableFuture#addListener} by taking a thread from an internal, * unbounded pool at the first call to {@code addListener} and holding it * until the future is {@linkplain Future#isDone() done}. * *

Prefer to create {@code ListenableFuture} instances with {@link * SettableFuture}, {@link MoreExecutors#listeningDecorator( * java.util.concurrent.ExecutorService)}, {@link ListenableFutureTask}, * {@link AbstractFuture}, and other utilities over creating plain {@code * Future} instances to be upgraded to {@code ListenableFuture} after the * fact. */ public static ListenableFuture listenInPoolThread( Future future) { if (future instanceof ListenableFuture) { return (ListenableFuture) future; } return new ListenableFutureAdapter(future); } /** * Submits a blocking task for the given {@link Future} to provide {@link * ListenableFuture} functionality. * *

Warning: If the input future does not already implement {@code * ListenableFuture}, the returned future will emulate {@link * ListenableFuture#addListener} by submitting a task to the given executor at * the first call to {@code addListener}. The task must be started by the * executor promptly, or else the returned {@code ListenableFuture} may fail * to work. The task's execution consists of blocking until the input future * is {@linkplain Future#isDone() done}, so each call to this method may * claim and hold a thread for an arbitrary length of time. Use of bounded * executors or other executors that may fail to execute a task promptly may * result in deadlocks. * *

Prefer to create {@code ListenableFuture} instances with {@link * SettableFuture}, {@link MoreExecutors#listeningDecorator( * java.util.concurrent.ExecutorService)}, {@link ListenableFutureTask}, * {@link AbstractFuture}, and other utilities over creating plain {@code * Future} instances to be upgraded to {@code ListenableFuture} after the * fact. * * @since 12.0 */ public static ListenableFuture listenInPoolThread( Future future, Executor executor) { checkNotNull(executor); if (future instanceof ListenableFuture) { return (ListenableFuture) future; } return new ListenableFutureAdapter(future, executor); } /** * An adapter to turn a {@link Future} into a {@link ListenableFuture}. This * will wait on the future to finish, and when it completes, run the * listeners. This implementation will wait on the source future * indefinitely, so if the source future never completes, the adapter will * never complete either. * *

If the delegate future is interrupted or throws an unexpected unchecked * exception, the listeners will not be invoked. */ private static class ListenableFutureAdapter extends ForwardingFuture implements ListenableFuture { private static final ThreadFactory threadFactory = new ThreadFactoryBuilder() .setDaemon(true) .setNameFormat("ListenableFutureAdapter-thread-%d") .build(); private static final Executor defaultAdapterExecutor = Executors.newCachedThreadPool(threadFactory); private final Executor adapterExecutor; // The execution list to hold our listeners. private final ExecutionList executionList = new ExecutionList(); // This allows us to only start up a thread waiting on the delegate future // when the first listener is added. private final AtomicBoolean hasListeners = new AtomicBoolean(false); // The delegate future. private final Future delegate; ListenableFutureAdapter(Future delegate) { this(delegate, defaultAdapterExecutor); } ListenableFutureAdapter(Future delegate, Executor adapterExecutor) { this.delegate = checkNotNull(delegate); this.adapterExecutor = checkNotNull(adapterExecutor); } @Override protected Future delegate() { return delegate; } @Override public void addListener(Runnable listener, Executor exec) { executionList.add(listener, exec); // When a listener is first added, we run a task that will wait for // the delegate to finish, and when it is done will run the listeners. if (hasListeners.compareAndSet(false, true)) { if (delegate.isDone()) { // If the delegate is already done, run the execution list // immediately on the current thread. executionList.execute(); return; } adapterExecutor.execute(new Runnable() { @Override public void run() { try { /* * Threads from our private pool are never interrupted. Threads * from a user-supplied executor might be, but... what can we do? * This is another reason to return a proper ListenableFuture * instead of using listenInPoolThread. */ getUninterruptibly(delegate); } catch (Error e) { throw e; } catch (Throwable e) { // ExecutionException / CancellationException / RuntimeException // The task is done, run the listeners. } executionList.execute(); } }); } } } private JdkFutureAdapters() {} }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy