All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.collect.TopKSelector Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

There is a newer version: 35.0.0.Final
Show newest version
/*
 * Copyright (C) 2014 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;

import com.google.common.annotations.GwtCompatible;
import com.google.common.math.IntMath;
import java.math.RoundingMode;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import java.util.stream.Stream;
import org.checkerframework.checker.nullness.compatqual.NullableDecl;

/**
 * An accumulator that selects the "top" {@code k} elements added to it, relative to a provided
 * comparator. "Top" can mean the greatest or the lowest elements, specified in the factory used to
 * create the {@code TopKSelector} instance.
 *
 * 

If your input data is available as a {@link Stream}, prefer passing {@link * Comparators#least(int)} to {@link Stream#collect(java.util.stream.Collector)}. If it is available * as an {@link Iterable} or {@link Iterator}, prefer {@link Ordering#leastOf(Iterable, int)}. * *

This uses the same efficient implementation as {@link Ordering#leastOf(Iterable, int)}, * offering expected O(n + k log k) performance (worst case O(n log k)) for n calls to {@link * #offer} and a call to {@link #topK}, with O(k) memory. In comparison, quickselect has the same * asymptotics but requires O(n) memory, and a {@code PriorityQueue} implementation takes O(n log * k). In benchmarks, this implementation performs at least as well as either implementation, and * degrades more gracefully for worst-case input. * *

The implementation does not necessarily use a stable sorting algorithm; when multiple * equivalent elements are added to it, it is undefined which will come first in the output. * * @author Louis Wasserman */ @GwtCompatible final class TopKSelector { /** * Returns a {@code TopKSelector} that collects the lowest {@code k} elements added to it, * relative to the natural ordering of the elements, and returns them via {@link #topK} in * ascending order. * * @throws IllegalArgumentException if {@code k < 0} */ public static > TopKSelector least(int k) { return least(k, Ordering.natural()); } /** * Returns a {@code TopKSelector} that collects the lowest {@code k} elements added to it, * relative to the specified comparator, and returns them via {@link #topK} in ascending order. * * @throws IllegalArgumentException if {@code k < 0} */ public static TopKSelector least(int k, Comparator comparator) { return new TopKSelector(comparator, k); } /** * Returns a {@code TopKSelector} that collects the greatest {@code k} elements added to it, * relative to the natural ordering of the elements, and returns them via {@link #topK} in * descending order. * * @throws IllegalArgumentException if {@code k < 0} */ public static > TopKSelector greatest(int k) { return greatest(k, Ordering.natural()); } /** * Returns a {@code TopKSelector} that collects the greatest {@code k} elements added to it, * relative to the specified comparator, and returns them via {@link #topK} in descending order. * * @throws IllegalArgumentException if {@code k < 0} */ public static TopKSelector greatest(int k, Comparator comparator) { return new TopKSelector(Ordering.from(comparator).reverse(), k); } private final int k; private final Comparator comparator; /* * We are currently considering the elements in buffer in the range [0, bufferSize) as candidates * for the top k elements. Whenever the buffer is filled, we quickselect the top k elements to the * range [0, k) and ignore the remaining elements. */ private final T[] buffer; private int bufferSize; /** * The largest of the lowest k elements we've seen so far relative to this comparator. If * bufferSize ≥ k, then we can ignore any elements greater than this value. */ @NullableDecl private T threshold; private TopKSelector(Comparator comparator, int k) { this.comparator = checkNotNull(comparator, "comparator"); this.k = k; checkArgument(k >= 0, "k must be nonnegative, was %s", k); this.buffer = (T[]) new Object[k * 2]; this.bufferSize = 0; this.threshold = null; } /** * Adds {@code elem} as a candidate for the top {@code k} elements. This operation takes amortized * O(1) time. */ public void offer(@NullableDecl T elem) { if (k == 0) { return; } else if (bufferSize == 0) { buffer[0] = elem; threshold = elem; bufferSize = 1; } else if (bufferSize < k) { buffer[bufferSize++] = elem; if (comparator.compare(elem, threshold) > 0) { threshold = elem; } } else if (comparator.compare(elem, threshold) < 0) { // Otherwise, we can ignore elem; we've seen k better elements. buffer[bufferSize++] = elem; if (bufferSize == 2 * k) { trim(); } } } /** * Quickselects the top k elements from the 2k elements in the buffer. O(k) expected time, O(k log * k) worst case. */ private void trim() { int left = 0; int right = 2 * k - 1; int minThresholdPosition = 0; // The leftmost position at which the greatest of the k lower elements // -- the new value of threshold -- might be found. int iterations = 0; int maxIterations = IntMath.log2(right - left, RoundingMode.CEILING) * 3; while (left < right) { int pivotIndex = (left + right + 1) >>> 1; int pivotNewIndex = partition(left, right, pivotIndex); if (pivotNewIndex > k) { right = pivotNewIndex - 1; } else if (pivotNewIndex < k) { left = Math.max(pivotNewIndex, left + 1); minThresholdPosition = pivotNewIndex; } else { break; } iterations++; if (iterations >= maxIterations) { // We've already taken O(k log k), let's make sure we don't take longer than O(k log k). Arrays.sort(buffer, left, right, comparator); break; } } bufferSize = k; threshold = buffer[minThresholdPosition]; for (int i = minThresholdPosition + 1; i < k; i++) { if (comparator.compare(buffer[i], threshold) > 0) { threshold = buffer[i]; } } } /** * Partitions the contents of buffer in the range [left, right] around the pivot element * previously stored in buffer[pivotValue]. Returns the new index of the pivot element, * pivotNewIndex, so that everything in [left, pivotNewIndex] is ≤ pivotValue and everything in * (pivotNewIndex, right] is greater than pivotValue. */ private int partition(int left, int right, int pivotIndex) { T pivotValue = buffer[pivotIndex]; buffer[pivotIndex] = buffer[right]; int pivotNewIndex = left; for (int i = left; i < right; i++) { if (comparator.compare(buffer[i], pivotValue) < 0) { swap(pivotNewIndex, i); pivotNewIndex++; } } buffer[right] = buffer[pivotNewIndex]; buffer[pivotNewIndex] = pivotValue; return pivotNewIndex; } private void swap(int i, int j) { T tmp = buffer[i]; buffer[i] = buffer[j]; buffer[j] = tmp; } TopKSelector combine(TopKSelector other) { for (int i = 0; i < other.bufferSize; i++) { this.offer(other.buffer[i]); } return this; } /** * Adds each member of {@code elements} as a candidate for the top {@code k} elements. This * operation takes amortized linear time in the length of {@code elements}. * *

If all input data to this {@code TopKSelector} is in a single {@code Iterable}, prefer * {@link Ordering#leastOf(Iterable, int)}, which provides a simpler API for that use case. */ public void offerAll(Iterable elements) { offerAll(elements.iterator()); } /** * Adds each member of {@code elements} as a candidate for the top {@code k} elements. This * operation takes amortized linear time in the length of {@code elements}. The iterator is * consumed after this operation completes. * *

If all input data to this {@code TopKSelector} is in a single {@code Iterator}, prefer * {@link Ordering#leastOf(Iterator, int)}, which provides a simpler API for that use case. */ public void offerAll(Iterator elements) { while (elements.hasNext()) { offer(elements.next()); } } /** * Returns the top {@code k} elements offered to this {@code TopKSelector}, or all elements if * fewer than {@code k} have been offered, in the order specified by the factory used to create * this {@code TopKSelector}. * *

The returned list is an unmodifiable copy and will not be affected by further changes to * this {@code TopKSelector}. This method returns in O(k log k) time. */ public List topK() { Arrays.sort(buffer, 0, bufferSize, comparator); if (bufferSize > k) { Arrays.fill(buffer, k, buffer.length, null); bufferSize = k; threshold = buffer[k - 1]; } // we have to support null elements, so no ImmutableList for us return Collections.unmodifiableList(Arrays.asList(Arrays.copyOf(buffer, bufferSize))); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy