All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.graph.Traverser Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

There is a newer version: 35.0.0.Final
Show newest version
/*
 * Copyright (C) 2017 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.graph;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;

import com.google.common.annotations.Beta;
import com.google.common.collect.AbstractIterator;
import com.google.common.collect.ImmutableSet;
import com.google.common.collect.Iterables;
import com.google.common.collect.UnmodifiableIterator;
import java.util.ArrayDeque;
import java.util.Deque;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Queue;
import java.util.Set;
import org.checkerframework.checker.nullness.compatqual.NullableDecl;

/**
 * An object that can traverse the nodes that are reachable from a specified (set of) start node(s)
 * using a specified {@link SuccessorsFunction}.
 *
 * 

There are two entry points for creating a {@code Traverser}: {@link * #forTree(SuccessorsFunction)} and {@link #forGraph(SuccessorsFunction)}. You should choose one * based on your answers to the following questions: * *

    *
  1. Is there only one path to any node that's reachable from any start node? (If so, the * graph to be traversed is a tree or forest even if it is a subgraph of a graph which is * neither.) *
  2. Are the node objects' implementations of {@code equals()}/{@code hashCode()} recursive? *
* *

If your answers are: * *

    *
  • (1) "no" and (2) "no", use {@link #forGraph(SuccessorsFunction)}. *
  • (1) "yes" and (2) "yes", use {@link #forTree(SuccessorsFunction)}. *
  • (1) "yes" and (2) "no", you can use either, but {@code forTree()} will be more efficient. *
  • (1) "no" and (2) "yes", neither will work, but if you transform your node * objects into a non-recursive form, you can use {@code forGraph()}. *
* * @author Jens Nyman * @param Node parameter type * @since 23.1 */ @Beta public abstract class Traverser { /** * Creates a new traverser for the given general {@code graph}. * *

Traversers created using this method are guaranteed to visit each node reachable from the * start node(s) at most once. * *

If you know that no node in {@code graph} is reachable by more than one path from the start * node(s), consider using {@link #forTree(SuccessorsFunction)} instead. * *

Performance notes * *

    *
  • Traversals require O(n) time (where n is the number of nodes reachable from * the start node), assuming that the node objects have O(1) {@code equals()} and * {@code hashCode()} implementations. (See the * notes on element objects for more information.) *
  • While traversing, the traverser will use O(n) space (where n is the number * of nodes that have thus far been visited), plus O(H) space (where H is the * number of nodes that have been seen but not yet visited, that is, the "horizon"). *
* * @param graph {@link SuccessorsFunction} representing a general graph that may have cycles. */ public static Traverser forGraph(SuccessorsFunction graph) { checkNotNull(graph); return new GraphTraverser<>(graph); } /** * Creates a new traverser for a directed acyclic graph that has at most one path from the start * node(s) to any node reachable from the start node(s), and has no paths from any start node to * any other start node, such as a tree or forest. * *

{@code forTree()} is especially useful (versus {@code forGraph()}) in cases where the data * structure being traversed is, in addition to being a tree/forest, also defined recursively. * This is because the {@code forTree()}-based implementations don't keep track of visited nodes, * and therefore don't need to call `equals()` or `hashCode()` on the node objects; this saves * both time and space versus traversing the same graph using {@code forGraph()}. * *

Providing a graph to be traversed for which there is more than one path from the start * node(s) to any node may lead to: * *

    *
  • Traversal not terminating (if the graph has cycles) *
  • Nodes being visited multiple times (if multiple paths exist from any start node to any * node reachable from any start node) *
* *

Performance notes * *

    *
  • Traversals require O(n) time (where n is the number of nodes reachable from * the start node). *
  • While traversing, the traverser will use O(H) space (where H is the number * of nodes that have been seen but not yet visited, that is, the "horizon"). *
* *

Examples (all edges are directed facing downwards) * *

The graph below would be valid input with start nodes of {@code a, f, c}. However, if {@code * b} were also a start node, then there would be multiple paths to reach {@code e} and * {@code h}. * *

{@code
   *    a     b      c
   *   / \   / \     |
   *  /   \ /   \    |
   * d     e     f   g
   *       |
   *       |
   *       h
   * }
* *

. * *

The graph below would be a valid input with start nodes of {@code a, f}. However, if {@code * b} were a start node, there would be multiple paths to {@code f}. * *

{@code
   *    a     b
   *   / \   / \
   *  /   \ /   \
   * c     d     e
   *        \   /
   *         \ /
   *          f
   * }
* *

Note on binary trees * *

This method can be used to traverse over a binary tree. Given methods {@code * leftChild(node)} and {@code rightChild(node)}, this method can be called as * *

{@code
   * Traverser.forTree(node -> ImmutableList.of(leftChild(node), rightChild(node)));
   * }
* * @param tree {@link SuccessorsFunction} representing a directed acyclic graph that has at most * one path between any two nodes */ public static Traverser forTree(SuccessorsFunction tree) { checkNotNull(tree); if (tree instanceof BaseGraph) { checkArgument(((BaseGraph) tree).isDirected(), "Undirected graphs can never be trees."); } if (tree instanceof Network) { checkArgument(((Network) tree).isDirected(), "Undirected networks can never be trees."); } return new TreeTraverser<>(tree); } /** * Returns an unmodifiable {@code Iterable} over the nodes reachable from {@code startNode}, in * the order of a breadth-first traversal. That is, all the nodes of depth 0 are returned, then * depth 1, then 2, and so on. * *

Example: The following graph with {@code startNode} {@code a} would return nodes in * the order {@code abcdef} (assuming successors are returned in alphabetical order). * *

{@code
   * b ---- a ---- d
   * |      |
   * |      |
   * e ---- c ---- f
   * }
* *

The behavior of this method is undefined if the nodes, or the topology of the graph, change * while iteration is in progress. * *

The returned {@code Iterable} can be iterated over multiple times. Every iterator will * compute its next element on the fly. It is thus possible to limit the traversal to a certain * number of nodes as follows: * *

{@code
   * Iterables.limit(Traverser.forGraph(graph).breadthFirst(node), maxNumberOfNodes);
   * }
* *

See Wikipedia for more * info. * * @throws IllegalArgumentException if {@code startNode} is not an element of the graph */ public abstract Iterable breadthFirst(N startNode); /** * Returns an unmodifiable {@code Iterable} over the nodes reachable from any of the {@code * startNodes}, in the order of a breadth-first traversal. This is equivalent to a breadth-first * traversal of a graph with an additional root node whose successors are the listed {@code * startNodes}. * * @throws IllegalArgumentException if any of {@code startNodes} is not an element of the graph * @see #breadthFirst(Object) * @since 24.1 */ public abstract Iterable breadthFirst(Iterable startNodes); /** * Returns an unmodifiable {@code Iterable} over the nodes reachable from {@code startNode}, in * the order of a depth-first pre-order traversal. "Pre-order" implies that nodes appear in the * {@code Iterable} in the order in which they are first visited. * *

Example: The following graph with {@code startNode} {@code a} would return nodes in * the order {@code abecfd} (assuming successors are returned in alphabetical order). * *

{@code
   * b ---- a ---- d
   * |      |
   * |      |
   * e ---- c ---- f
   * }
* *

The behavior of this method is undefined if the nodes, or the topology of the graph, change * while iteration is in progress. * *

The returned {@code Iterable} can be iterated over multiple times. Every iterator will * compute its next element on the fly. It is thus possible to limit the traversal to a certain * number of nodes as follows: * *

{@code
   * Iterables.limit(
   *     Traverser.forGraph(graph).depthFirstPreOrder(node), maxNumberOfNodes);
   * }
* *

See Wikipedia for more info. * * @throws IllegalArgumentException if {@code startNode} is not an element of the graph */ public abstract Iterable depthFirstPreOrder(N startNode); /** * Returns an unmodifiable {@code Iterable} over the nodes reachable from any of the {@code * startNodes}, in the order of a depth-first pre-order traversal. This is equivalent to a * depth-first pre-order traversal of a graph with an additional root node whose successors are * the listed {@code startNodes}. * * @throws IllegalArgumentException if any of {@code startNodes} is not an element of the graph * @see #depthFirstPreOrder(Object) * @since 24.1 */ public abstract Iterable depthFirstPreOrder(Iterable startNodes); /** * Returns an unmodifiable {@code Iterable} over the nodes reachable from {@code startNode}, in * the order of a depth-first post-order traversal. "Post-order" implies that nodes appear in the * {@code Iterable} in the order in which they are visited for the last time. * *

Example: The following graph with {@code startNode} {@code a} would return nodes in * the order {@code fcebda} (assuming successors are returned in alphabetical order). * *

{@code
   * b ---- a ---- d
   * |      |
   * |      |
   * e ---- c ---- f
   * }
* *

The behavior of this method is undefined if the nodes, or the topology of the graph, change * while iteration is in progress. * *

The returned {@code Iterable} can be iterated over multiple times. Every iterator will * compute its next element on the fly. It is thus possible to limit the traversal to a certain * number of nodes as follows: * *

{@code
   * Iterables.limit(
   *     Traverser.forGraph(graph).depthFirstPostOrder(node), maxNumberOfNodes);
   * }
* *

See Wikipedia for more info. * * @throws IllegalArgumentException if {@code startNode} is not an element of the graph */ public abstract Iterable depthFirstPostOrder(N startNode); /** * Returns an unmodifiable {@code Iterable} over the nodes reachable from any of the {@code * startNodes}, in the order of a depth-first post-order traversal. This is equivalent to a * depth-first post-order traversal of a graph with an additional root node whose successors are * the listed {@code startNodes}. * * @throws IllegalArgumentException if any of {@code startNodes} is not an element of the graph * @see #depthFirstPostOrder(Object) * @since 24.1 */ public abstract Iterable depthFirstPostOrder(Iterable startNodes); // Avoid subclasses outside of this class private Traverser() {} private static final class GraphTraverser extends Traverser { private final SuccessorsFunction graph; GraphTraverser(SuccessorsFunction graph) { this.graph = checkNotNull(graph); } @Override public Iterable breadthFirst(final N startNode) { checkNotNull(startNode); return breadthFirst(ImmutableSet.of(startNode)); } @Override public Iterable breadthFirst(final Iterable startNodes) { checkNotNull(startNodes); if (Iterables.isEmpty(startNodes)) { return ImmutableSet.of(); } for (N startNode : startNodes) { checkThatNodeIsInGraph(startNode); } return new Iterable() { @Override public Iterator iterator() { return new BreadthFirstIterator(startNodes); } }; } @Override public Iterable depthFirstPreOrder(final N startNode) { checkNotNull(startNode); return depthFirstPreOrder(ImmutableSet.of(startNode)); } @Override public Iterable depthFirstPreOrder(final Iterable startNodes) { checkNotNull(startNodes); if (Iterables.isEmpty(startNodes)) { return ImmutableSet.of(); } for (N startNode : startNodes) { checkThatNodeIsInGraph(startNode); } return new Iterable() { @Override public Iterator iterator() { return new DepthFirstIterator(startNodes, Order.PREORDER); } }; } @Override public Iterable depthFirstPostOrder(final N startNode) { checkNotNull(startNode); return depthFirstPostOrder(ImmutableSet.of(startNode)); } @Override public Iterable depthFirstPostOrder(final Iterable startNodes) { checkNotNull(startNodes); if (Iterables.isEmpty(startNodes)) { return ImmutableSet.of(); } for (N startNode : startNodes) { checkThatNodeIsInGraph(startNode); } return new Iterable() { @Override public Iterator iterator() { return new DepthFirstIterator(startNodes, Order.POSTORDER); } }; } @SuppressWarnings("CheckReturnValue") private void checkThatNodeIsInGraph(N startNode) { // successors() throws an IllegalArgumentException for nodes that are not an element of the // graph. graph.successors(startNode); } private final class BreadthFirstIterator extends UnmodifiableIterator { private final Queue queue = new ArrayDeque<>(); private final Set visited = new HashSet<>(); BreadthFirstIterator(Iterable roots) { for (N root : roots) { // add all roots to the queue, skipping duplicates if (visited.add(root)) { queue.add(root); } } } @Override public boolean hasNext() { return !queue.isEmpty(); } @Override public N next() { N current = queue.remove(); for (N neighbor : graph.successors(current)) { if (visited.add(neighbor)) { queue.add(neighbor); } } return current; } } private final class DepthFirstIterator extends AbstractIterator { private final Deque stack = new ArrayDeque<>(); private final Set visited = new HashSet<>(); private final Order order; DepthFirstIterator(Iterable roots, Order order) { stack.push(new NodeAndSuccessors(null, roots)); this.order = order; } @Override protected N computeNext() { while (true) { if (stack.isEmpty()) { return endOfData(); } NodeAndSuccessors nodeAndSuccessors = stack.getFirst(); boolean firstVisit = visited.add(nodeAndSuccessors.node); boolean lastVisit = !nodeAndSuccessors.successorIterator.hasNext(); boolean produceNode = (firstVisit && order == Order.PREORDER) || (lastVisit && order == Order.POSTORDER); if (lastVisit) { stack.pop(); } else { // we need to push a neighbor, but only if we haven't already seen it N successor = nodeAndSuccessors.successorIterator.next(); if (!visited.contains(successor)) { stack.push(withSuccessors(successor)); } } if (produceNode && nodeAndSuccessors.node != null) { return nodeAndSuccessors.node; } } } NodeAndSuccessors withSuccessors(N node) { return new NodeAndSuccessors(node, graph.successors(node)); } /** A simple tuple of a node and a partially iterated {@link Iterator} of its successors. */ private final class NodeAndSuccessors { @NullableDecl final N node; final Iterator successorIterator; NodeAndSuccessors(@NullableDecl N node, Iterable successors) { this.node = node; this.successorIterator = successors.iterator(); } } } } private static final class TreeTraverser extends Traverser { private final SuccessorsFunction tree; TreeTraverser(SuccessorsFunction tree) { this.tree = checkNotNull(tree); } @Override public Iterable breadthFirst(final N startNode) { checkNotNull(startNode); return breadthFirst(ImmutableSet.of(startNode)); } @Override public Iterable breadthFirst(final Iterable startNodes) { checkNotNull(startNodes); if (Iterables.isEmpty(startNodes)) { return ImmutableSet.of(); } for (N startNode : startNodes) { checkThatNodeIsInTree(startNode); } return new Iterable() { @Override public Iterator iterator() { return new BreadthFirstIterator(startNodes); } }; } @Override public Iterable depthFirstPreOrder(final N startNode) { checkNotNull(startNode); return depthFirstPreOrder(ImmutableSet.of(startNode)); } @Override public Iterable depthFirstPreOrder(final Iterable startNodes) { checkNotNull(startNodes); if (Iterables.isEmpty(startNodes)) { return ImmutableSet.of(); } for (N node : startNodes) { checkThatNodeIsInTree(node); } return new Iterable() { @Override public Iterator iterator() { return new DepthFirstPreOrderIterator(startNodes); } }; } @Override public Iterable depthFirstPostOrder(final N startNode) { checkNotNull(startNode); return depthFirstPostOrder(ImmutableSet.of(startNode)); } @Override public Iterable depthFirstPostOrder(final Iterable startNodes) { checkNotNull(startNodes); if (Iterables.isEmpty(startNodes)) { return ImmutableSet.of(); } for (N startNode : startNodes) { checkThatNodeIsInTree(startNode); } return new Iterable() { @Override public Iterator iterator() { return new DepthFirstPostOrderIterator(startNodes); } }; } @SuppressWarnings("CheckReturnValue") private void checkThatNodeIsInTree(N startNode) { // successors() throws an IllegalArgumentException for nodes that are not an element of the // graph. tree.successors(startNode); } private final class BreadthFirstIterator extends UnmodifiableIterator { private final Queue queue = new ArrayDeque<>(); BreadthFirstIterator(Iterable roots) { for (N root : roots) { queue.add(root); } } @Override public boolean hasNext() { return !queue.isEmpty(); } @Override public N next() { N current = queue.remove(); Iterables.addAll(queue, tree.successors(current)); return current; } } private final class DepthFirstPreOrderIterator extends UnmodifiableIterator { private final Deque> stack = new ArrayDeque<>(); DepthFirstPreOrderIterator(Iterable roots) { stack.addLast(roots.iterator()); } @Override public boolean hasNext() { return !stack.isEmpty(); } @Override public N next() { Iterator iterator = stack.getLast(); // throws NoSuchElementException if empty N result = checkNotNull(iterator.next()); if (!iterator.hasNext()) { stack.removeLast(); } Iterator childIterator = tree.successors(result).iterator(); if (childIterator.hasNext()) { stack.addLast(childIterator); } return result; } } private final class DepthFirstPostOrderIterator extends AbstractIterator { private final ArrayDeque stack = new ArrayDeque<>(); DepthFirstPostOrderIterator(Iterable roots) { stack.addLast(new NodeAndChildren(null, roots)); } @Override protected N computeNext() { while (!stack.isEmpty()) { NodeAndChildren top = stack.getLast(); if (top.childIterator.hasNext()) { N child = top.childIterator.next(); stack.addLast(withChildren(child)); } else { stack.removeLast(); if (top.node != null) { return top.node; } } } return endOfData(); } NodeAndChildren withChildren(N node) { return new NodeAndChildren(node, tree.successors(node)); } /** A simple tuple of a node and a partially iterated {@link Iterator} of its children. */ private final class NodeAndChildren { @NullableDecl final N node; final Iterator childIterator; NodeAndChildren(@NullableDecl N node, Iterable children) { this.node = node; this.childIterator = children.iterator(); } } } } private enum Order { PREORDER, POSTORDER } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy