io.netty.handler.codec.compression.Bzip2BlockDecompressor Maven / Gradle / Ivy
Go to download
This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including
all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and
Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up
with different versions on classes on the class path).
/*
* Copyright 2014 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package io.netty.handler.codec.compression;
import static io.netty.handler.codec.compression.Bzip2Constants.*;
/**
* Reads and decompresses a single Bzip2 block.
*
* Block decoding consists of the following stages:
* 1. Read block header
* 2. Read Huffman tables
* 3. Read and decode Huffman encoded data - {@link #decodeHuffmanData(Bzip2HuffmanStageDecoder)}
* 4. Run-Length Decoding[2] - {@link #decodeHuffmanData(Bzip2HuffmanStageDecoder)}
* 5. Inverse Move To Front Transform - {@link #decodeHuffmanData(Bzip2HuffmanStageDecoder)}
* 6. Inverse Burrows Wheeler Transform - {@link #initialiseInverseBWT()}
* 7. Run-Length Decoding[1] - {@link #read()}
* 8. Optional Block De-Randomisation - {@link #read()} (through {@link #decodeNextBWTByte()})
*/
final class Bzip2BlockDecompressor {
/**
* A reader that provides bit-level reads.
*/
private final Bzip2BitReader reader;
/**
* Calculates the block CRC from the fully decoded bytes of the block.
*/
private final Crc32 crc = new Crc32();
/**
* The CRC of the current block as read from the block header.
*/
private final int blockCRC;
/**
* {@code true} if the current block is randomised, otherwise {@code false}.
*/
private final boolean blockRandomised;
/* Huffman Decoding stage */
/**
* The end-of-block Huffman symbol. Decoding of the block ends when this is encountered.
*/
int huffmanEndOfBlockSymbol;
/**
* Bitmap, of ranges of 16 bytes, present/not present.
*/
int huffmanInUse16;
/**
* A map from Huffman symbol index to output character. Some types of data (e.g. ASCII text)
* may contain only a limited number of byte values; Huffman symbols are only allocated to
* those values that actually occur in the uncompressed data.
*/
final byte[] huffmanSymbolMap = new byte[256];
/* Move To Front stage */
/**
* Counts of each byte value within the {@link Bzip2BlockDecompressor#huffmanSymbolMap} data.
* Collected at the Move To Front stage, consumed by the Inverse Burrows Wheeler Transform stage.
*/
private final int[] bwtByteCounts = new int[256];
/**
* The Burrows-Wheeler Transform processed data. Read at the Move To Front stage, consumed by the
* Inverse Burrows Wheeler Transform stage.
*/
private final byte[] bwtBlock;
/**
* Starting pointer into BWT for after untransform.
*/
private final int bwtStartPointer;
/* Inverse Burrows-Wheeler Transform stage */
/**
* At each position contains the union of :-
* An output character (8 bits)
* A pointer from each position to its successor (24 bits, left shifted 8 bits)
* As the pointer cannot exceed the maximum block size of 900k, 24 bits is more than enough to
* hold it; Folding the character data into the spare bits while performing the inverse BWT,
* when both pieces of information are available, saves a large number of memory accesses in
* the final decoding stages.
*/
private int[] bwtMergedPointers;
/**
* The current merged pointer into the Burrow-Wheeler Transform array.
*/
private int bwtCurrentMergedPointer;
/**
* The actual length in bytes of the current block at the Inverse Burrows Wheeler Transform
* stage (before final Run-Length Decoding).
*/
private int bwtBlockLength;
/**
* The number of output bytes that have been decoded up to the Inverse Burrows Wheeler Transform stage.
*/
private int bwtBytesDecoded;
/* Run-Length Encoding and Random Perturbation stage */
/**
* The most recently RLE decoded byte.
*/
private int rleLastDecodedByte = -1;
/**
* The number of previous identical output bytes decoded. After 4 identical bytes, the next byte
* decoded is an RLE repeat count.
*/
private int rleAccumulator;
/**
* The RLE repeat count of the current decoded byte. When this reaches zero, a new byte is decoded.
*/
private int rleRepeat;
/**
* If the current block is randomised, the position within the RNUMS randomisation array.
*/
private int randomIndex;
/**
* If the current block is randomised, the remaining count at the current RNUMS position.
*/
private int randomCount = Bzip2Rand.rNums(0) - 1;
/**
* Table for Move To Front transformations.
*/
private final Bzip2MoveToFrontTable symbolMTF = new Bzip2MoveToFrontTable();
// This variables is used to save current state if we haven't got enough readable bits
private int repeatCount;
private int repeatIncrement = 1;
private int mtfValue;
Bzip2BlockDecompressor(final int blockSize, final int blockCRC, final boolean blockRandomised,
final int bwtStartPointer, final Bzip2BitReader reader) {
bwtBlock = new byte[blockSize];
this.blockCRC = blockCRC;
this.blockRandomised = blockRandomised;
this.bwtStartPointer = bwtStartPointer;
this.reader = reader;
}
/**
* Reads the Huffman encoded data from the input stream, performs Run-Length Decoding and
* applies the Move To Front transform to reconstruct the Burrows-Wheeler Transform array.
*/
boolean decodeHuffmanData(final Bzip2HuffmanStageDecoder huffmanDecoder) {
final Bzip2BitReader reader = this.reader;
final byte[] bwtBlock = this.bwtBlock;
final byte[] huffmanSymbolMap = this.huffmanSymbolMap;
final int streamBlockSize = this.bwtBlock.length;
final int huffmanEndOfBlockSymbol = this.huffmanEndOfBlockSymbol;
final int[] bwtByteCounts = this.bwtByteCounts;
final Bzip2MoveToFrontTable symbolMTF = this.symbolMTF;
int bwtBlockLength = this.bwtBlockLength;
int repeatCount = this.repeatCount;
int repeatIncrement = this.repeatIncrement;
int mtfValue = this.mtfValue;
for (;;) {
if (!reader.hasReadableBits(HUFFMAN_DECODE_MAX_CODE_LENGTH)) {
this.bwtBlockLength = bwtBlockLength;
this.repeatCount = repeatCount;
this.repeatIncrement = repeatIncrement;
this.mtfValue = mtfValue;
return false;
}
final int nextSymbol = huffmanDecoder.nextSymbol();
if (nextSymbol == HUFFMAN_SYMBOL_RUNA) {
repeatCount += repeatIncrement;
repeatIncrement <<= 1;
} else if (nextSymbol == HUFFMAN_SYMBOL_RUNB) {
repeatCount += repeatIncrement << 1;
repeatIncrement <<= 1;
} else {
if (repeatCount > 0) {
if (bwtBlockLength + repeatCount > streamBlockSize) {
throw new DecompressionException("block exceeds declared block size");
}
final byte nextByte = huffmanSymbolMap[mtfValue];
bwtByteCounts[nextByte & 0xff] += repeatCount;
while (--repeatCount >= 0) {
bwtBlock[bwtBlockLength++] = nextByte;
}
repeatCount = 0;
repeatIncrement = 1;
}
if (nextSymbol == huffmanEndOfBlockSymbol) {
break;
}
if (bwtBlockLength >= streamBlockSize) {
throw new DecompressionException("block exceeds declared block size");
}
mtfValue = symbolMTF.indexToFront(nextSymbol - 1) & 0xff;
final byte nextByte = huffmanSymbolMap[mtfValue];
bwtByteCounts[nextByte & 0xff]++;
bwtBlock[bwtBlockLength++] = nextByte;
}
}
this.bwtBlockLength = bwtBlockLength;
initialiseInverseBWT();
return true;
}
/**
* Set up the Inverse Burrows-Wheeler Transform merged pointer array.
*/
private void initialiseInverseBWT() {
final int bwtStartPointer = this.bwtStartPointer;
final byte[] bwtBlock = this.bwtBlock;
final int[] bwtMergedPointers = new int[bwtBlockLength];
final int[] characterBase = new int[256];
if (bwtStartPointer < 0 || bwtStartPointer >= bwtBlockLength) {
throw new DecompressionException("start pointer invalid");
}
// Cumulative character counts
System.arraycopy(bwtByteCounts, 0, characterBase, 1, 255);
for (int i = 2; i <= 255; i++) {
characterBase[i] += characterBase[i - 1];
}
// Merged-Array Inverse Burrows-Wheeler Transform
// Combining the output characters and forward pointers into a single array here, where we
// have already read both of the corresponding values, cuts down on memory accesses in the
// final walk through the array
for (int i = 0; i < bwtBlockLength; i++) {
int value = bwtBlock[i] & 0xff;
bwtMergedPointers[characterBase[value]++] = (i << 8) + value;
}
this.bwtMergedPointers = bwtMergedPointers;
bwtCurrentMergedPointer = bwtMergedPointers[bwtStartPointer];
}
/**
* Decodes a byte from the final Run-Length Encoding stage, pulling a new byte from the
* Burrows-Wheeler Transform stage when required.
* @return The decoded byte, or -1 if there are no more bytes
*/
public int read() {
while (rleRepeat < 1) {
if (bwtBytesDecoded == bwtBlockLength) {
return -1;
}
int nextByte = decodeNextBWTByte();
if (nextByte != rleLastDecodedByte) {
// New byte, restart accumulation
rleLastDecodedByte = nextByte;
rleRepeat = 1;
rleAccumulator = 1;
crc.updateCRC(nextByte);
} else {
if (++rleAccumulator == 4) {
// Accumulation complete, start repetition
int rleRepeat = decodeNextBWTByte() + 1;
this.rleRepeat = rleRepeat;
rleAccumulator = 0;
crc.updateCRC(nextByte, rleRepeat);
} else {
rleRepeat = 1;
crc.updateCRC(nextByte);
}
}
}
rleRepeat--;
return rleLastDecodedByte;
}
/**
* Decodes a byte from the Burrows-Wheeler Transform stage. If the block has randomisation
* applied, reverses the randomisation.
* @return The decoded byte
*/
private int decodeNextBWTByte() {
int mergedPointer = bwtCurrentMergedPointer;
int nextDecodedByte = mergedPointer & 0xff;
bwtCurrentMergedPointer = bwtMergedPointers[mergedPointer >>> 8];
if (blockRandomised) {
if (--randomCount == 0) {
nextDecodedByte ^= 1;
randomIndex = (randomIndex + 1) % 512;
randomCount = Bzip2Rand.rNums(randomIndex);
}
}
bwtBytesDecoded++;
return nextDecodedByte;
}
public int blockLength() {
return bwtBlockLength;
}
/**
* Verify and return the block CRC. This method may only be called
* after all of the block's bytes have been read.
* @return The block CRC
*/
int checkCRC() {
final int computedBlockCRC = crc.getCRC();
if (blockCRC != computedBlockCRC) {
throw new DecompressionException("block CRC error");
}
return computedBlockCRC;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy