Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including
all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and
Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up
with different versions on classes on the class path).
/*
* JBoss, Home of Professional Open Source.
* Copyright 2014 Red Hat, Inc., and individual contributors
* as indicated by the @author tags.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Written by Doug Lea and Martin Buchholz with assistance from members of
* JCP JSR-166 Expert Group and released to the public domain, as explained
* at http://creativecommons.org/publicdomain/zero/1.0/
*/
package io.undertow.util;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Deque;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;
/**
* A modified version of ConcurrentLinkedDequeue which includes direct
* removal and is portable accorss all JVMs. This is only a fallback if
* the JVM does not offer access to Unsafe.
*
* More specifically, an unbounded concurrent {@linkplain java.util.Deque deque} based on linked nodes.
* Concurrent insertion, removal, and access operations execute safely
* across multiple threads.
* A {@code ConcurrentLinkedDeque} is an appropriate choice when
* many threads will share access to a common collection.
* Like most other concurrent collection implementations, this class
* does not permit the use of {@code null} elements.
*
*
Iterators are weakly consistent, returning elements
* reflecting the state of the deque at some point at or since the
* creation of the iterator. They do not throw {@link
* java.util.ConcurrentModificationException
* ConcurrentModificationException}, and may proceed concurrently with
* other operations.
*
*
Beware that, unlike in most collections, the {@code size} method
* is NOT a constant-time operation. Because of the
* asynchronous nature of these deques, determining the current number
* of elements requires a traversal of the elements, and so may report
* inaccurate results if this collection is modified during traversal.
* Additionally, the bulk operations {@code addAll},
* {@code removeAll}, {@code retainAll}, {@code containsAll},
* {@code equals}, and {@code toArray} are not guaranteed
* to be performed atomically. For example, an iterator operating
* concurrently with an {@code addAll} operation might view only some
* of the added elements.
*
*
This class and its iterator implement all of the optional
* methods of the {@link java.util.Deque} and {@link java.util.Iterator} interfaces.
*
*
Memory consistency effects: As with other concurrent collections,
* actions in a thread prior to placing an object into a
* {@code ConcurrentLinkedDeque}
* happen-before
* actions subsequent to the access or removal of that element from
* the {@code ConcurrentLinkedDeque} in another thread.
*
*
This class is a member of the
*
* Java Collections Framework.
*
* @since 1.7
* @author Doug Lea
* @author Martin Buchholz
* @author Jason T. Grene
* @param the type of elements held in this collection
*/
public class PortableConcurrentDirectDeque
extends ConcurrentDirectDeque implements Deque, java.io.Serializable {
/*
* This is an implementation of a concurrent lock-free deque
* supporting interior removes but not interior insertions, as
* required to support the entire Deque interface.
*
* We extend the techniques developed for ConcurrentLinkedQueue and
* LinkedTransferQueue (see the internal docs for those classes).
* Understanding the ConcurrentLinkedQueue implementation is a
* prerequisite for understanding the implementation of this class.
*
* The data structure is a symmetrical doubly-linked "GC-robust"
* linked list of nodes. We minimize the number of volatile writes
* using two techniques: advancing multiple hops with a single CAS
* and mixing volatile and non-volatile writes of the same memory
* locations.
*
* A node contains the expected E ("item") and links to predecessor
* ("prev") and successor ("next") nodes:
*
* class Node { volatile Node prev, next; volatile E item; }
*
* A node p is considered "live" if it contains a non-null item
* (p.item != null). When an item is CASed to null, the item is
* atomically logically deleted from the collection.
*
* At any time, there is precisely one "first" node with a null
* prev reference that terminates any chain of prev references
* starting at a live node. Similarly there is precisely one
* "last" node terminating any chain of next references starting at
* a live node. The "first" and "last" nodes may or may not be live.
* The "first" and "last" nodes are always mutually reachable.
*
* A new element is added atomically by CASing the null prev or
* next reference in the first or last node to a fresh node
* containing the element. The element's node atomically becomes
* "live" at that point.
*
* A node is considered "active" if it is a live node, or the
* first or last node. Active nodes cannot be unlinked.
*
* A "self-link" is a next or prev reference that is the same node:
* p.prev == p or p.next == p
* Self-links are used in the node unlinking process. Active nodes
* never have self-links.
*
* A node p is active if and only if:
*
* p.item != null ||
* (p.prev == null && p.next != p) ||
* (p.next == null && p.prev != p)
*
* The deque object has two node references, "head" and "tail".
* The head and tail are only approximations to the first and last
* nodes of the deque. The first node can always be found by
* following prev pointers from head; likewise for tail. However,
* it is permissible for head and tail to be referring to deleted
* nodes that have been unlinked and so may not be reachable from
* any live node.
*
* There are 3 stages of node deletion;
* "logical deletion", "unlinking", and "gc-unlinking".
*
* 1. "logical deletion" by CASing item to null atomically removes
* the element from the collection, and makes the containing node
* eligible for unlinking.
*
* 2. "unlinking" makes a deleted node unreachable from active
* nodes, and thus eventually reclaimable by GC. Unlinked nodes
* may remain reachable indefinitely from an iterator.
*
* Physical node unlinking is merely an optimization (albeit a
* critical one), and so can be performed at our convenience. At
* any time, the set of live nodes maintained by prev and next
* links are identical, that is, the live nodes found via next
* links from the first node is equal to the elements found via
* prev links from the last node. However, this is not true for
* nodes that have already been logically deleted - such nodes may
* be reachable in one direction only.
*
* 3. "gc-unlinking" takes unlinking further by making active
* nodes unreachable from deleted nodes, making it easier for the
* GC to reclaim future deleted nodes. This step makes the data
* structure "gc-robust", as first described in detail by Boehm
* (http://portal.acm.org/citation.cfm?doid=503272.503282).
*
* GC-unlinked nodes may remain reachable indefinitely from an
* iterator, but unlike unlinked nodes, are never reachable from
* head or tail.
*
* Making the data structure GC-robust will eliminate the risk of
* unbounded memory retention with conservative GCs and is likely
* to improve performance with generational GCs.
*
* When a node is dequeued at either end, e.g. via poll(), we would
* like to break any references from the node to active nodes. We
* develop further the use of self-links that was very effective in
* other concurrent collection classes. The idea is to replace
* prev and next pointers with special values that are interpreted
* to mean off-the-list-at-one-end. These are approximations, but
* good enough to preserve the properties we want in our
* traversals, e.g. we guarantee that a traversal will never visit
* the same element twice, but we don't guarantee whether a
* traversal that runs out of elements will be able to see more
* elements later after enqueues at that end. Doing gc-unlinking
* safely is particularly tricky, since any node can be in use
* indefinitely (for example by an iterator). We must ensure that
* the nodes pointed at by head/tail never get gc-unlinked, since
* head/tail are needed to get "back on track" by other nodes that
* are gc-unlinked. gc-unlinking accounts for much of the
* implementation complexity.
*
* Since neither unlinking nor gc-unlinking are necessary for
* correctness, there are many implementation choices regarding
* frequency (eagerness) of these operations. Since volatile
* reads are likely to be much cheaper than CASes, saving CASes by
* unlinking multiple adjacent nodes at a time may be a win.
* gc-unlinking can be performed rarely and still be effective,
* since it is most important that long chains of deleted nodes
* are occasionally broken.
*
* The actual representation we use is that p.next == p means to
* goto the first node (which in turn is reached by following prev
* pointers from head), and p.next == null && p.prev == p means
* that the iteration is at an end and that p is a (static final)
* dummy node, NEXT_TERMINATOR, and not the last active node.
* Finishing the iteration when encountering such a TERMINATOR is
* good enough for read-only traversals, so such traversals can use
* p.next == null as the termination condition. When we need to
* find the last (active) node, for enqueueing a new node, we need
* to check whether we have reached a TERMINATOR node; if so,
* restart traversal from tail.
*
* The implementation is completely directionally symmetrical,
* except that most public methods that iterate through the list
* follow next pointers ("forward" direction).
*
* We believe (without full proof) that all single-element deque
* operations (e.g., addFirst, peekLast, pollLast) are linearizable
* (see Herlihy and Shavit's book). However, some combinations of
* operations are known not to be linearizable. In particular,
* when an addFirst(A) is racing with pollFirst() removing B, it is
* possible for an observer iterating over the elements to observe
* A B C and subsequently observe A C, even though no interior
* removes are ever performed. Nevertheless, iterators behave
* reasonably, providing the "weakly consistent" guarantees.
*
* Empirically, microbenchmarks suggest that this class adds about
* 40% overhead relative to ConcurrentLinkedQueue, which feels as
* good as we can hope for.
*/
private static final long serialVersionUID = 876323262645176354L;
/**
* A node from which the first node on list (that is, the unique node p
* with p.prev == null && p.next != p) can be reached in O(1) time.
* Invariants:
* - the first node is always O(1) reachable from head via prev links
* - all live nodes are reachable from the first node via succ()
* - head != null
* - (tmp = head).next != tmp || tmp != head
* - head is never gc-unlinked (but may be unlinked)
* Non-invariants:
* - head.item may or may not be null
* - head may not be reachable from the first or last node, or from tail
*/
private transient volatile Node head;
/**
* A node from which the last node on list (that is, the unique node p
* with p.next == null && p.prev != p) can be reached in O(1) time.
* Invariants:
* - the last node is always O(1) reachable from tail via next links
* - all live nodes are reachable from the last node via pred()
* - tail != null
* - tail is never gc-unlinked (but may be unlinked)
* Non-invariants:
* - tail.item may or may not be null
* - tail may not be reachable from the first or last node, or from head
*/
private transient volatile Node tail;
private static final AtomicReferenceFieldUpdater headUpdater = AtomicReferenceFieldUpdater.newUpdater(PortableConcurrentDirectDeque.class, Node.class, "head");
private static final AtomicReferenceFieldUpdater tailUpdater = AtomicReferenceFieldUpdater.newUpdater(PortableConcurrentDirectDeque.class, Node.class, "tail");
private static final Node