All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jgroups.util.AverageMinMax Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

There is a newer version: 35.0.0.Final
Show newest version
package org.jgroups.util;

import java.io.DataInput;
import java.io.DataOutput;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

/**
 * Measures min and max in addition to average
 * @author Bela Ban
 * @since  4.0, 3.6.10
 */
public class AverageMinMax extends Average {
    protected long       min=Long.MAX_VALUE, max=0;
    protected List values;

    public long          min()                        {return min;}
    public long          max()                        {return max;}
    public boolean       usePercentiles()             {return values != null;}
    public AverageMinMax usePercentiles(int capacity) {values=capacity > 0? new ArrayList<>(capacity) : null; return this;}

    public  T add(long num) {
        super.add(num);
        min=Math.min(min, num);
        max=Math.max(max, num);
        if(values != null)
            values.add(num);
        return (T)this;
    }

    public  T merge(T other) {
        if(other.count() == 0)
            return (T)this;
        super.merge(other);
        if(other instanceof AverageMinMax) {
            AverageMinMax o=(AverageMinMax)other;
            this.min=Math.min(min, o.min());
            this.max=Math.max(max, o.max());
            if(this.values != null)
                this.values.addAll(o.values);
        }
        return (T)this;
    }

    public void clear() {
        super.clear();
        if(values != null)
            values.clear();
        min=Long.MAX_VALUE; max=0;
    }

    public String percentiles() {
        if(values == null) return "n/a";
        Collections.sort(values);
        double stddev=stddev();
        return String.format("stddev: %.2f, 50: %d, 90: %d, 99: %d, 99.9: %d, 99.99: %d, 99.999: %d, 100: %d\n",
                             stddev, p(50), p(90), p(99), p(99.9), p(99.99), p(99.999), p(100));
    }

    protected long p(double percentile) {
        if(values == null)
            return -1;
        int size=values.size();
        int index=(int)(size * (percentile/100.0));
        return values.get(index-1);
    }

    protected double stddev() {
        if(values == null) return -1.0;
        double av=average();
        int size=values.size();
        double variance=values.stream().map(v -> (v - av)*(v - av)).reduce(0.0, (x, y) -> x + y) / size;
        return Math.sqrt(variance);
    }

    public String toString() {
        return count == 0? "n/a" : String.format("min/avg/max=%,d/%,.2f/%,d", min, getAverage(), max);
    }

    public void writeTo(DataOutput out) throws Exception {
        super.writeTo(out);
        Bits.writeLong(min, out);
        Bits.writeLong(max, out);
    }

    public void readFrom(DataInput in) throws Exception {
        super.readFrom(in);
        min=Bits.readLong(in);
        max=Bits.readLong(in);
    }


}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy