All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.collect.Streams Maven / Gradle / Ivy

Go to download

This artifact provides a single jar that contains all classes required to use remote Jakarta Enterprise Beans and Jakarta Messaging, including all dependencies. It is intended for use by those not using maven, maven users should just import the Jakarta Enterprise Beans and Jakarta Messaging BOM's instead (shaded JAR's cause lots of problems with maven, as it is very easy to inadvertently end up with different versions on classes on the class path).

There is a newer version: 35.0.0.Beta1
Show newest version
/*
 * Copyright (C) 2015 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you
 * may not use this file except in compliance with the License.  You may
 * obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.  See the License for the specific language governing
 * permissions and limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkState;

import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;
import com.google.common.math.LongMath;
import java.util.ArrayDeque;
import java.util.Collection;
import java.util.Deque;
import java.util.Iterator;
import java.util.OptionalDouble;
import java.util.OptionalInt;
import java.util.OptionalLong;
import java.util.PrimitiveIterator;
import java.util.Spliterator;
import java.util.Spliterators;
import java.util.Spliterators.AbstractSpliterator;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.DoubleConsumer;
import java.util.function.IntConsumer;
import java.util.function.LongConsumer;
import java.util.stream.DoubleStream;
import java.util.stream.IntStream;
import java.util.stream.LongStream;
import java.util.stream.Stream;
import java.util.stream.StreamSupport;
import org.checkerframework.checker.nullness.compatqual.NullableDecl;

/**
 * Static utility methods related to {@code Stream} instances.
 *
 * @since 21.0
 */
@Beta
@GwtCompatible
public final class Streams {
  /**
   * Returns a sequential {@link Stream} of the contents of {@code iterable}, delegating to {@link
   * Collection#stream} if possible.
   */
  public static  Stream stream(Iterable iterable) {
    return (iterable instanceof Collection)
        ? ((Collection) iterable).stream()
        : StreamSupport.stream(iterable.spliterator(), false);
  }

  /**
   * Returns {@link Collection#stream}.
   *
   * @deprecated There is no reason to use this; just invoke {@code collection.stream()} directly.
   */
  @Deprecated
  public static  Stream stream(Collection collection) {
    return collection.stream();
  }

  /**
   * Returns a sequential {@link Stream} of the remaining contents of {@code iterator}. Do not use
   * {@code iterator} directly after passing it to this method.
   */
  public static  Stream stream(Iterator iterator) {
    return StreamSupport.stream(Spliterators.spliteratorUnknownSize(iterator, 0), false);
  }

  /**
   * If a value is present in {@code optional}, returns a stream containing only that element,
   * otherwise returns an empty stream.
   */
  public static  Stream stream(com.google.common.base.Optional optional) {
    return optional.isPresent() ? Stream.of(optional.get()) : Stream.of();
  }

  /**
   * If a value is present in {@code optional}, returns a stream containing only that element,
   * otherwise returns an empty stream.
   *
   * 

Java 9 users: use {@code optional.stream()} instead. */ public static Stream stream(java.util.Optional optional) { return optional.isPresent() ? Stream.of(optional.get()) : Stream.of(); } /** * If a value is present in {@code optional}, returns a stream containing only that element, * otherwise returns an empty stream. * *

Java 9 users: use {@code optional.stream()} instead. */ public static IntStream stream(OptionalInt optional) { return optional.isPresent() ? IntStream.of(optional.getAsInt()) : IntStream.empty(); } /** * If a value is present in {@code optional}, returns a stream containing only that element, * otherwise returns an empty stream. * *

Java 9 users: use {@code optional.stream()} instead. */ public static LongStream stream(OptionalLong optional) { return optional.isPresent() ? LongStream.of(optional.getAsLong()) : LongStream.empty(); } /** * If a value is present in {@code optional}, returns a stream containing only that element, * otherwise returns an empty stream. * *

Java 9 users: use {@code optional.stream()} instead. */ public static DoubleStream stream(OptionalDouble optional) { return optional.isPresent() ? DoubleStream.of(optional.getAsDouble()) : DoubleStream.empty(); } /** * Returns a {@link Stream} containing the elements of the first stream, followed by the elements * of the second stream, and so on. * *

This is equivalent to {@code Stream.of(streams).flatMap(stream -> stream)}, but the returned * stream may perform better. * * @see Stream#concat(Stream, Stream) */ @SafeVarargs public static Stream concat(Stream... streams) { // TODO(lowasser): consider an implementation that can support SUBSIZED boolean isParallel = false; int characteristics = Spliterator.ORDERED | Spliterator.SIZED | Spliterator.NONNULL; long estimatedSize = 0L; ImmutableList.Builder> splitrsBuilder = new ImmutableList.Builder<>(streams.length); for (Stream stream : streams) { isParallel |= stream.isParallel(); Spliterator splitr = stream.spliterator(); splitrsBuilder.add(splitr); characteristics &= splitr.characteristics(); estimatedSize = LongMath.saturatedAdd(estimatedSize, splitr.estimateSize()); } return StreamSupport.stream( CollectSpliterators.flatMap( splitrsBuilder.build().spliterator(), splitr -> (Spliterator) splitr, characteristics, estimatedSize), isParallel) .onClose( () -> { for (Stream stream : streams) { stream.close(); } }); } /** * Returns an {@link IntStream} containing the elements of the first stream, followed by the * elements of the second stream, and so on. * *

This is equivalent to {@code Stream.of(streams).flatMapToInt(stream -> stream)}, but the * returned stream may perform better. * * @see IntStream#concat(IntStream, IntStream) */ public static IntStream concat(IntStream... streams) { // TODO(lowasser): optimize this later return Stream.of(streams).flatMapToInt(stream -> stream); } /** * Returns a {@link LongStream} containing the elements of the first stream, followed by the * elements of the second stream, and so on. * *

This is equivalent to {@code Stream.of(streams).flatMapToLong(stream -> stream)}, but the * returned stream may perform better. * * @see LongStream#concat(LongStream, LongStream) */ public static LongStream concat(LongStream... streams) { // TODO(lowasser): optimize this later return Stream.of(streams).flatMapToLong(stream -> stream); } /** * Returns a {@link DoubleStream} containing the elements of the first stream, followed by the * elements of the second stream, and so on. * *

This is equivalent to {@code Stream.of(streams).flatMapToDouble(stream -> stream)}, but the * returned stream may perform better. * * @see DoubleStream#concat(DoubleStream, DoubleStream) */ public static DoubleStream concat(DoubleStream... streams) { // TODO(lowasser): optimize this later return Stream.of(streams).flatMapToDouble(stream -> stream); } /** * Returns a stream in which each element is the result of passing the corresponding elementY of * each of {@code streamA} and {@code streamB} to {@code function}. * *

For example: * *

{@code
   * Streams.zip(
   *   Stream.of("foo1", "foo2", "foo3"),
   *   Stream.of("bar1", "bar2"),
   *   (arg1, arg2) -> arg1 + ":" + arg2)
   * }
* *

will return {@code Stream.of("foo1:bar1", "foo2:bar2")}. * *

The resulting stream will only be as long as the shorter of the two input streams; if one * stream is longer, its extra elements will be ignored. * *

Note that if you are calling {@link Stream#forEach} on the resulting stream, you might want * to consider using {@link #forEachPair} instead of this method. * *

Performance note: The resulting stream is not efficiently splittable. * This may harm parallel performance. */ public static Stream zip( Stream streamA, Stream streamB, BiFunction function) { checkNotNull(streamA); checkNotNull(streamB); checkNotNull(function); boolean isParallel = streamA.isParallel() || streamB.isParallel(); // same as Stream.concat Spliterator splitrA = streamA.spliterator(); Spliterator splitrB = streamB.spliterator(); int characteristics = splitrA.characteristics() & splitrB.characteristics() & (Spliterator.SIZED | Spliterator.ORDERED); Iterator itrA = Spliterators.iterator(splitrA); Iterator itrB = Spliterators.iterator(splitrB); return StreamSupport.stream( new AbstractSpliterator( Math.min(splitrA.estimateSize(), splitrB.estimateSize()), characteristics) { @Override public boolean tryAdvance(Consumer action) { if (itrA.hasNext() && itrB.hasNext()) { action.accept(function.apply(itrA.next(), itrB.next())); return true; } return false; } }, isParallel) .onClose(streamA::close) .onClose(streamB::close); } /** * Invokes {@code consumer} once for each pair of corresponding elements in {@code streamA} * and {@code streamB}. If one stream is longer than the other, the extra elements are silently * ignored. Elements passed to the consumer are guaranteed to come from the same position in their * respective source streams. For example: * *

{@code
   * Streams.forEachPair(
   *   Stream.of("foo1", "foo2", "foo3"),
   *   Stream.of("bar1", "bar2"),
   *   (arg1, arg2) -> System.out.println(arg1 + ":" + arg2)
   * }
* *

will print: * *

{@code
   * foo1:bar1
   * foo2:bar2
   * }
* *

Warning: If either supplied stream is a parallel stream, the same correspondence * between elements will be made, but the order in which those pairs of elements are passed to the * consumer is not defined. * *

Note that many usages of this method can be replaced with simpler calls to {@link #zip}. * This method behaves equivalently to {@linkplain #zip zipping} the stream elements into * temporary pair objects and then using {@link Stream#forEach} on that stream. * * @since 22.0 */ public static void forEachPair( Stream streamA, Stream streamB, BiConsumer consumer) { checkNotNull(consumer); if (streamA.isParallel() || streamB.isParallel()) { zip(streamA, streamB, TemporaryPair::new).forEach(pair -> consumer.accept(pair.a, pair.b)); } else { Iterator iterA = streamA.iterator(); Iterator iterB = streamB.iterator(); while (iterA.hasNext() && iterB.hasNext()) { consumer.accept(iterA.next(), iterB.next()); } } } // Use this carefully - it doesn't implement value semantics private static class TemporaryPair { final A a; final B b; TemporaryPair(A a, B b) { this.a = a; this.b = b; } } /** * Returns a stream consisting of the results of applying the given function to the elements of * {@code stream} and their indices in the stream. For example, * *

{@code
   * mapWithIndex(
   *     Stream.of("a", "b", "c"),
   *     (str, index) -> str + ":" + index)
   * }
* *

would return {@code Stream.of("a:0", "b:1", "c:2")}. * *

The resulting stream is efficiently splittable * if and only if {@code stream} was efficiently splittable and its underlying spliterator * reported {@link Spliterator#SUBSIZED}. This is generally the case if the underlying stream * comes from a data structure supporting efficient indexed random access, typically an array or * list. * *

The order of the resulting stream is defined if and only if the order of the original stream * was defined. */ public static Stream mapWithIndex( Stream stream, FunctionWithIndex function) { checkNotNull(stream); checkNotNull(function); boolean isParallel = stream.isParallel(); Spliterator fromSpliterator = stream.spliterator(); if (!fromSpliterator.hasCharacteristics(Spliterator.SUBSIZED)) { Iterator fromIterator = Spliterators.iterator(fromSpliterator); return StreamSupport.stream( new AbstractSpliterator( fromSpliterator.estimateSize(), fromSpliterator.characteristics() & (Spliterator.ORDERED | Spliterator.SIZED)) { long index = 0; @Override public boolean tryAdvance(Consumer action) { if (fromIterator.hasNext()) { action.accept(function.apply(fromIterator.next(), index++)); return true; } return false; } }, isParallel) .onClose(stream::close); } class Splitr extends MapWithIndexSpliterator, R, Splitr> implements Consumer { @NullableDecl T holder; Splitr(Spliterator splitr, long index) { super(splitr, index); } @Override public void accept(@NullableDecl T t) { this.holder = t; } @Override public boolean tryAdvance(Consumer action) { if (fromSpliterator.tryAdvance(this)) { try { action.accept(function.apply(holder, index++)); return true; } finally { holder = null; } } return false; } @Override Splitr createSplit(Spliterator from, long i) { return new Splitr(from, i); } } return StreamSupport.stream(new Splitr(fromSpliterator, 0), isParallel).onClose(stream::close); } /** * Returns a stream consisting of the results of applying the given function to the elements of * {@code stream} and their indexes in the stream. For example, * *

{@code
   * mapWithIndex(
   *     IntStream.of(0, 1, 2),
   *     (i, index) -> i + ":" + index)
   * }
* *

...would return {@code Stream.of("0:0", "1:1", "2:2")}. * *

The resulting stream is efficiently splittable * if and only if {@code stream} was efficiently splittable and its underlying spliterator * reported {@link Spliterator#SUBSIZED}. This is generally the case if the underlying stream * comes from a data structure supporting efficient indexed random access, typically an array or * list. * *

The order of the resulting stream is defined if and only if the order of the original stream * was defined. */ public static Stream mapWithIndex(IntStream stream, IntFunctionWithIndex function) { checkNotNull(stream); checkNotNull(function); boolean isParallel = stream.isParallel(); Spliterator.OfInt fromSpliterator = stream.spliterator(); if (!fromSpliterator.hasCharacteristics(Spliterator.SUBSIZED)) { PrimitiveIterator.OfInt fromIterator = Spliterators.iterator(fromSpliterator); return StreamSupport.stream( new AbstractSpliterator( fromSpliterator.estimateSize(), fromSpliterator.characteristics() & (Spliterator.ORDERED | Spliterator.SIZED)) { long index = 0; @Override public boolean tryAdvance(Consumer action) { if (fromIterator.hasNext()) { action.accept(function.apply(fromIterator.nextInt(), index++)); return true; } return false; } }, isParallel) .onClose(stream::close); } class Splitr extends MapWithIndexSpliterator implements IntConsumer, Spliterator { int holder; Splitr(Spliterator.OfInt splitr, long index) { super(splitr, index); } @Override public void accept(int t) { this.holder = t; } @Override public boolean tryAdvance(Consumer action) { if (fromSpliterator.tryAdvance(this)) { action.accept(function.apply(holder, index++)); return true; } return false; } @Override Splitr createSplit(Spliterator.OfInt from, long i) { return new Splitr(from, i); } } return StreamSupport.stream(new Splitr(fromSpliterator, 0), isParallel).onClose(stream::close); } /** * Returns a stream consisting of the results of applying the given function to the elements of * {@code stream} and their indexes in the stream. For example, * *

{@code
   * mapWithIndex(
   *     LongStream.of(0, 1, 2),
   *     (i, index) -> i + ":" + index)
   * }
* *

...would return {@code Stream.of("0:0", "1:1", "2:2")}. * *

The resulting stream is efficiently splittable * if and only if {@code stream} was efficiently splittable and its underlying spliterator * reported {@link Spliterator#SUBSIZED}. This is generally the case if the underlying stream * comes from a data structure supporting efficient indexed random access, typically an array or * list. * *

The order of the resulting stream is defined if and only if the order of the original stream * was defined. */ public static Stream mapWithIndex(LongStream stream, LongFunctionWithIndex function) { checkNotNull(stream); checkNotNull(function); boolean isParallel = stream.isParallel(); Spliterator.OfLong fromSpliterator = stream.spliterator(); if (!fromSpliterator.hasCharacteristics(Spliterator.SUBSIZED)) { PrimitiveIterator.OfLong fromIterator = Spliterators.iterator(fromSpliterator); return StreamSupport.stream( new AbstractSpliterator( fromSpliterator.estimateSize(), fromSpliterator.characteristics() & (Spliterator.ORDERED | Spliterator.SIZED)) { long index = 0; @Override public boolean tryAdvance(Consumer action) { if (fromIterator.hasNext()) { action.accept(function.apply(fromIterator.nextLong(), index++)); return true; } return false; } }, isParallel) .onClose(stream::close); } class Splitr extends MapWithIndexSpliterator implements LongConsumer, Spliterator { long holder; Splitr(Spliterator.OfLong splitr, long index) { super(splitr, index); } @Override public void accept(long t) { this.holder = t; } @Override public boolean tryAdvance(Consumer action) { if (fromSpliterator.tryAdvance(this)) { action.accept(function.apply(holder, index++)); return true; } return false; } @Override Splitr createSplit(Spliterator.OfLong from, long i) { return new Splitr(from, i); } } return StreamSupport.stream(new Splitr(fromSpliterator, 0), isParallel).onClose(stream::close); } /** * Returns a stream consisting of the results of applying the given function to the elements of * {@code stream} and their indexes in the stream. For example, * *

{@code
   * mapWithIndex(
   *     DoubleStream.of(0, 1, 2),
   *     (x, index) -> x + ":" + index)
   * }
* *

...would return {@code Stream.of("0.0:0", "1.0:1", "2.0:2")}. * *

The resulting stream is efficiently splittable * if and only if {@code stream} was efficiently splittable and its underlying spliterator * reported {@link Spliterator#SUBSIZED}. This is generally the case if the underlying stream * comes from a data structure supporting efficient indexed random access, typically an array or * list. * *

The order of the resulting stream is defined if and only if the order of the original stream * was defined. */ public static Stream mapWithIndex( DoubleStream stream, DoubleFunctionWithIndex function) { checkNotNull(stream); checkNotNull(function); boolean isParallel = stream.isParallel(); Spliterator.OfDouble fromSpliterator = stream.spliterator(); if (!fromSpliterator.hasCharacteristics(Spliterator.SUBSIZED)) { PrimitiveIterator.OfDouble fromIterator = Spliterators.iterator(fromSpliterator); return StreamSupport.stream( new AbstractSpliterator( fromSpliterator.estimateSize(), fromSpliterator.characteristics() & (Spliterator.ORDERED | Spliterator.SIZED)) { long index = 0; @Override public boolean tryAdvance(Consumer action) { if (fromIterator.hasNext()) { action.accept(function.apply(fromIterator.nextDouble(), index++)); return true; } return false; } }, isParallel) .onClose(stream::close); } class Splitr extends MapWithIndexSpliterator implements DoubleConsumer, Spliterator { double holder; Splitr(Spliterator.OfDouble splitr, long index) { super(splitr, index); } @Override public void accept(double t) { this.holder = t; } @Override public boolean tryAdvance(Consumer action) { if (fromSpliterator.tryAdvance(this)) { action.accept(function.apply(holder, index++)); return true; } return false; } @Override Splitr createSplit(Spliterator.OfDouble from, long i) { return new Splitr(from, i); } } return StreamSupport.stream(new Splitr(fromSpliterator, 0), isParallel).onClose(stream::close); } /** * An analogue of {@link java.util.function.Function} also accepting an index. * *

This interface is only intended for use by callers of {@link #mapWithIndex(Stream, * FunctionWithIndex)}. * * @since 21.0 */ @Beta public interface FunctionWithIndex { /** Applies this function to the given argument and its index within a stream. */ R apply(T from, long index); } private abstract static class MapWithIndexSpliterator< F extends Spliterator, R, S extends MapWithIndexSpliterator> implements Spliterator { final F fromSpliterator; long index; MapWithIndexSpliterator(F fromSpliterator, long index) { this.fromSpliterator = fromSpliterator; this.index = index; } abstract S createSplit(F from, long i); @Override public S trySplit() { @SuppressWarnings("unchecked") F split = (F) fromSpliterator.trySplit(); if (split == null) { return null; } S result = createSplit(split, index); this.index += split.getExactSizeIfKnown(); return result; } @Override public long estimateSize() { return fromSpliterator.estimateSize(); } @Override public int characteristics() { return fromSpliterator.characteristics() & (Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED); } } /** * An analogue of {@link java.util.function.IntFunction} also accepting an index. * *

This interface is only intended for use by callers of {@link #mapWithIndex(IntStream, * IntFunctionWithIndex)}. * * @since 21.0 */ @Beta public interface IntFunctionWithIndex { /** Applies this function to the given argument and its index within a stream. */ R apply(int from, long index); } /** * An analogue of {@link java.util.function.LongFunction} also accepting an index. * *

This interface is only intended for use by callers of {@link #mapWithIndex(LongStream, * LongFunctionWithIndex)}. * * @since 21.0 */ @Beta public interface LongFunctionWithIndex { /** Applies this function to the given argument and its index within a stream. */ R apply(long from, long index); } /** * An analogue of {@link java.util.function.DoubleFunction} also accepting an index. * *

This interface is only intended for use by callers of {@link #mapWithIndex(DoubleStream, * DoubleFunctionWithIndex)}. * * @since 21.0 */ @Beta public interface DoubleFunctionWithIndex { /** Applies this function to the given argument and its index within a stream. */ R apply(double from, long index); } /** * Returns the last element of the specified stream, or {@link java.util.Optional#empty} if the * stream is empty. * *

Equivalent to {@code stream.reduce((a, b) -> b)}, but may perform significantly better. This * method's runtime will be between O(log n) and O(n), performing better on efficiently splittable * streams. * *

If the stream has nondeterministic order, this has equivalent semantics to {@link * Stream#findAny} (which you might as well use). * * @see Stream#findFirst() * @throws NullPointerException if the last element of the stream is null */ public static java.util.Optional findLast(Stream stream) { class OptionalState { boolean set = false; T value = null; void set(@NullableDecl T value) { this.set = true; this.value = value; } T get() { checkState(set); return value; } } OptionalState state = new OptionalState(); Deque> splits = new ArrayDeque<>(); splits.addLast(stream.spliterator()); while (!splits.isEmpty()) { Spliterator spliterator = splits.removeLast(); if (spliterator.getExactSizeIfKnown() == 0) { continue; // drop this split } // Many spliterators will have trySplits that are SUBSIZED even if they are not themselves // SUBSIZED. if (spliterator.hasCharacteristics(Spliterator.SUBSIZED)) { // we can drill down to exactly the smallest nonempty spliterator while (true) { Spliterator prefix = spliterator.trySplit(); if (prefix == null || prefix.getExactSizeIfKnown() == 0) { break; } else if (spliterator.getExactSizeIfKnown() == 0) { spliterator = prefix; break; } } // spliterator is known to be nonempty now spliterator.forEachRemaining(state::set); return java.util.Optional.of(state.get()); } Spliterator prefix = spliterator.trySplit(); if (prefix == null || prefix.getExactSizeIfKnown() == 0) { // we can't split this any further spliterator.forEachRemaining(state::set); if (state.set) { return java.util.Optional.of(state.get()); } // fall back to the last split continue; } splits.addLast(prefix); splits.addLast(spliterator); } return java.util.Optional.empty(); } /** * Returns the last element of the specified stream, or {@link OptionalInt#empty} if the stream is * empty. * *

Equivalent to {@code stream.reduce((a, b) -> b)}, but may perform significantly better. This * method's runtime will be between O(log n) and O(n), performing better on efficiently splittable * streams. * * @see IntStream#findFirst() * @throws NullPointerException if the last element of the stream is null */ public static OptionalInt findLast(IntStream stream) { // findLast(Stream) does some allocation, so we might as well box some more java.util.Optional boxedLast = findLast(stream.boxed()); return boxedLast.isPresent() ? OptionalInt.of(boxedLast.get()) : OptionalInt.empty(); } /** * Returns the last element of the specified stream, or {@link OptionalLong#empty} if the stream * is empty. * *

Equivalent to {@code stream.reduce((a, b) -> b)}, but may perform significantly better. This * method's runtime will be between O(log n) and O(n), performing better on efficiently splittable * streams. * * @see LongStream#findFirst() * @throws NullPointerException if the last element of the stream is null */ public static OptionalLong findLast(LongStream stream) { // findLast(Stream) does some allocation, so we might as well box some more java.util.Optional boxedLast = findLast(stream.boxed()); return boxedLast.isPresent() ? OptionalLong.of(boxedLast.get()) : OptionalLong.empty(); } /** * Returns the last element of the specified stream, or {@link OptionalDouble#empty} if the stream * is empty. * *

Equivalent to {@code stream.reduce((a, b) -> b)}, but may perform significantly better. This * method's runtime will be between O(log n) and O(n), performing better on efficiently splittable * streams. * * @see DoubleStream#findFirst() * @throws NullPointerException if the last element of the stream is null */ public static OptionalDouble findLast(DoubleStream stream) { // findLast(Stream) does some allocation, so we might as well box some more java.util.Optional boxedLast = findLast(stream.boxed()); return boxedLast.isPresent() ? OptionalDouble.of(boxedLast.get()) : OptionalDouble.empty(); } private Streams() {} }